
IoT Device Access(IoTDA)
25.9.0.SPC002

User Guide

Issue 01

Date 2025-11-30

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Getting Started.. 1
1.1 Accessing and Using IoTDA... 1
1.2 Connecting MQTT Devices... 1
1.3 Connecting NB-IoT Devices... 11

2 User Guide...22
2.1 Products..22
2.1.1 Creating a Product.. 22
2.1.2 Querying a Product... 24
2.1.3 Exporting a Product.. 26
2.2 Devices.. 27
2.2.1 Registering a Device... 27
2.2.1.1 Registering an Individual Device...27
2.2.1.2 Registering a Batch of Devices.. 30
2.2.1.3 Exporting Batch Device Registration/Deletion Details.. 30
2.2.2 Managing a Device... 31
2.2.2.1 Viewing and Deleting a Device... 31
2.2.2.2 Exporting Device Information.. 34
2.2.2.3 Device Authentication.. 35
2.2.2.4 Device Shadow.. 38
2.2.2.5 Child Devices..42
2.2.2.6 Tags... 46
2.2.2.7 Asset Properties.. 47
2.2.2.8 Cloud O&M Configuration.. 48
2.2.2.9 Device Configuration Detection.. 49
2.2.3 Groups... 50
2.2.4 Software/Firmware Upgrades... 51
2.2.4.1 Overview... 51
2.2.4.2 Firmware Upgrades... 53
2.2.4.3 Software Upgrade.. 58
2.2.4.4 Exporting Software/Firmware Upgrade Details...61
2.2.5 Device CA Certificates.. 62
2.2.6 MQTT X.509 Certificate Access... 65
2.2.7 HarmonyOS Device Management... 70

IoT Device Access(IoTDA)
User Guide Contents

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

2.2.7.1 Device Connection Based on HarmonyOS Soft Bus...71
2.3 Rules.. 75
2.3.1 Overview...75
2.3.2 Data Forwarding.. 75
2.3.3 SQL Statements... 85
2.3.4 Connectivity Tests.. 91
2.3.5 Server Certificates... 91
2.3.6 Device Linkage..92
2.3.6.1 Cloud Rules.. 93
2.3.6.2 Device-side Rules... 95
2.3.7 Data Forwarding Flow Control Policy.. 104
2.4 Monitoring and O&M... 105
2.4.1 Reports.. 105
2.4.2 Device Alarms...107
2.4.3 Message Trace.. 108
2.4.4 Online Debugging...110
2.5 Device Security Center.. 115
2.6 HarmonyOS Module..124
2.6.1 HarmonyOS Soft Bus... 124
2.6.2 Device Engine... 125
2.7 Resource Spaces.. 126
2.8 Plug-ins.. 127
2.8.1 Introduction...127
2.8.2 Procedure... 128
2.9 Message Communications.. 134
2.9.1 Overview.. 134
2.9.2 Data Reporting...135
2.9.3 Command Delivery... 136
2.9.3.1 Mechanism...136
2.9.3.2 Command, Property, and Message Delivery for MQTT Devices..138
2.9.3.3 Command Delivery for Devices Using CoAP.. 143
2.9.4 Custom Topic Communications..148
2.9.5 M2M Communications.. 156
2.10 Subscription/Push...162
2.10.1 Overview.. 162
2.10.2 Kafka Subscription/Push.. 163
2.10.3 AMQP Subscription/Push... 165
2.10.3.1 Overview.. 165
2.10.3.2 AMQP Client Access... 166
2.10.3.3 Java SDK Access Example... 169
2.10.3.4 Node.js SDK Access Example...172
2.10.3.5 C# SDK Access Example..173

IoT Device Access(IoTDA)
User Guide Contents

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

2.10.4 HTTP/HTTPS Subscription/Push.. 177
2.11 IoTEdge.. 183
2.11.1 Node Management.. 183
2.11.1.1 Registering an Edge Node..183
2.11.1.2 Installing an Edge Node... 187
2.11.1.3 Managing an Edge Node..191
2.11.1.3.1 Overview... 192
2.11.1.3.2 Modules...194
2.11.1.3.3 OT Data Collection Configuration..196
2.11.1.3.4 IT Data Collection Configuration..204
2.11.1.3.5 Batch Task Import..214
2.11.1.3.6 Child Devices... 216
2.11.1.3.7 Data Configuration..217
2.11.1.3.8 Remote Maintenance... 218
2.11.1.3.9 Active/Standby Configuration..222
2.11.1.3.10 Deleting an Edge Node... 231
2.11.2 Connecting a Device to an Edge Node... 232
2.11.2.1 Connection Mode.. 232
2.11.2.2 Protocol Conversion..235
2.11.2.2.1 Modbus Device Access... 236
2.11.2.2.2 OPC UA Device Access... 245
2.11.2.3 Transparent Transmission Gateway.. 252
2.11.3 Application Management.. 257
2.11.3.1 Overview.. 258
2.11.3.2 Adding a Service Application.. 258
2.11.3.3 Adding a Driver Application.. 266
2.11.3.4 Adding a Version... 275
2.11.3.5 Deploying an Application... 276
2.11.3.6 Managing an Application... 279
2.11.4 IT Subsystem Integration... 281
2.11.4.1 Overview.. 281
2.11.4.2 Route Configuration... 282
2.11.4.3 Module Configuration... 284
2.11.4.4 IT Data Collection... 286
2.11.5 Route Forwarding... 290
2.11.5.1 Overview.. 290
2.11.5.2 Channel Types.. 291
2.11.5.2.1 MQTT... 291
2.11.5.2.2 IoTDB... 292
2.11.5.2.3 InfluxDB V2.. 293
2.11.5.3 Creating a Channel... 294
2.11.5.4 Deploying the Edge Push Application on a Node..295

IoT Device Access(IoTDA)
User Guide Contents

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

2.11.5.5 Allocating a Channel to a Node...295

3 Best Practices... 296
3.1 Connecting a Device Simulator to IoTDA.. 296
3.2 Automatic Device Shutdown Upon High Temperature... 302
3.3 Triggering and Forwarding an Alarm.. 305
3.4 Sharing Device Location Information.. 309
3.5 Using a Custom Topic for Communication..314
3.6 Quick Integration with ROMA Connect.. 317
3.7 Developing a Protocol Conversion Gateway for Access of Generic-Protocol Devices................................ 323
3.8 IoTDA in Industrial Data Collection... 325

4 FAQs... 334
4.1 Product Models... 334
4.1.1 How Can I Develop a Product Model?.. 334
4.2 Data Reporting.. 334
4.2.1 How Do I Handle Data Reporting Failure?.. 334
4.2.2 Why Does a Device Report Data Successfully at One Location but Fail Elsewhere?.............................. 334
4.3 Command Delivery.. 334
4.3.1 How Do I Handle Command Delivery Failure?...335
4.3.2 How Do I Deliver Commands to a CoAP Device?.. 335
4.3.3 How Do I Deliver Commands to an MQTT Device?..336
4.4 Software or Firmware Upgrade... 336
4.4.1 What Is a Software or Firmware Upgrade?... 336
4.4.2 Can I Download Software or Firmware Packages from Third-Party Servers to IoTDA?.........................336
4.5 Edge Devices.. 336
4.5.1 Why Does an Edge Device Fail MQTT Authentication?...336
4.5.2 Why Cannot Docker Bridges Communicate with Each Other After the OS of Atlas 500 Is Upgraded
to 22.0?..336
4.5.3 Why Is There No Password Text Box When I Change the Password of an Edge Device?......................337
4.6 Clock Synchronization on Edge Nodes..337
4.6.1 Configuration File Directory.. 337
4.6.2 Configuration Example..338
4.6.3 Configuration Items... 338
4.6.4 Precautions.. 338
4.7 Edge Node Bridge Configuration.. 338
4.7.1 Configuration File Directory.. 339
4.7.2 Configuration Example..339
4.7.3 Configuration Items... 339
4.7.4 Precautions.. 340

IoT Device Access(IoTDA)
User Guide Contents

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

1 Getting Started

1.1 Accessing and Using IoTDA
Step 1 Use an account with the IoT Device Access (IoTDA) permissions to log in to

ManageOne Operation Portal with a browser.

URL: https://Address for accessing ManageOne Operation Portal. For example,
https://console.demo.com/momaintenancewebsite/uniportal/#/home.

Step 2 Click in the upper left corner of the page and choose IoT > IoT Device
Access.

Step 3 (Optional) If IoTDA is not enabled, click Apply for IoTDA and contact your
enterprise administrator to enable it.

Step 4 Log in to the IoTDA console.

----End

1.2 Connecting MQTT Devices

Using the MQTT Device Simulator
This topic uses a device simulator as an example to describe how to connect
devices to IoTDA using the native MQTT protocol. The device simulator is an
MQTT client, which enables you to easily verify whether devices can interact with
IoTDA to publish or subscribe to messages.

Prerequisites
You have enabled the IoTDA service through your enterprise administrator.

Obtaining Device Access Information
Perform the following procedure to obtain device access information on the IoTDA
console:

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Step 1 Log in to the IoTDA console.

Step 2 Choose Overview in the navigation pane, view the MQTTS access address and
port, and click Download CA Certificate to save the server certificate file.

NO TE

Notes on the device access address

● Generally, only IP address access is supported, and the domain name is displayed as
default.

● For devices that do not support domain name access, use IP addresses instead.

Notes on the security protocol for device access

● For security purposes, non-encrypted ports, such as CoAP and MQTT ports, are disabled
by default. To enable them, contact O&M engineers.

● If a secure protocol is specified for connecting a registered device to the platform, a
non-encrypted port cannot be used for device access.

● If an insecure protocol is specified for connecting a registered device to the platform, a
non-encrypted port can be used for access. The device successfully connected to the
platform using an encrypted port cannot be connected again using a non-encrypted
port.

----End

Creating a Product

If you have defined a product model (profile), skip this step.

This example shows how to create a product model for reporting battery
information. In this profile:

Service ID: Battery, which indicates a service related to the battery.

Property: batteryLevel, which is a property of the Battery service to indicate the
battery level.

The procedure is as follows:

Step 1 Log in to the IoTDA console.

Step 2 Choose Products in the navigation pane.

Step 3 Click Create Product in the upper right corner, set the parameters based on Table
1-1, and click OK.

Table 1-1 Creating a product

Parameter Description

Resource
Space

IoTDA automatically allocates the created product to the default
resource space.
● You can select another resource space from the drop-down list

box as you want.
● You can create a resource space in Resource Spaces and

allocate your products in it.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Parameter Description

Product
Name

Enter a name unique in the resource space.

Protocol In this example, select MQTT.

Data Type In this example, select JSON. IoTDA communicates with devices
in the JSON format, which is a standard format defined by the
product model.

Manufacture
r

Enter the manufacturer name of the device.

Device Type You can set it to StreetLight, GasMeter, or WaterMeter.

Step 4 In the row of the product created in Step 3, click View to access its details.

Step 5 On the Model Definition tab page, click Customize Model, add the Battery
service, and click OK.

Figure 1-1 Adding a service

Step 6 Click the service created in Step 5, click Add Property, set the parameters as
shown in the figure below, and click OK.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Figure 1-2 Adding a property

----End

Registering a Device

Step 1 In the navigation pane, choose Devices > All Devices, click Register Device in the
upper right corner, set the parameters based on the table below, and click OK.

Table 1-2 Registering a device

Parameter Description

Resource
Space

Select the resource space that the device belongs to.

Product Select the product that the device belongs to.
You can select a product only when it is available on the
Products page. If no product is available, create a product first.

Node ID Customize a unique physical identifier for the device that uses
MQTT for access.
The device ID and secret are returned after the registration, and
the device uses them to connect to IoTDA.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Parameter Description

Device Name Enter a custom device name.

Device ID Enter a unique device ID. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of [product_id]_ [node_id].

Device
Description

Describe the device.

Authenticatio
n Type

● Secret: The device uses the secret for identity verification.
● X.509 certificate: The device uses an X.509 certificate for

identity verification. Before registering a device
authenticated by an X.509 certificate, upload the device CA
certificate to IoTDA and bind the device certificate to the
device during device registration. For details, see Device CA
Certificates.

Secret Specify a secret used for device access. If no secret is specified,
IoTDA automatically generates one.

Confirm
Secret

Keep it the same as the entered secret.

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Enter the fingerprint of Presetting an X.509
Certificate. You can run the openssl x509 -fingerprint -
sha256 -in deviceCert.pem command in the OpenSSL view to
query the fingerprint. Note: Delete the colon (:) from the
obtained fingerprint when filling it.

Step 2 Save the device ID and secret. They are used for authentication when the device
attempts to access IoTDA.

NO TE

If the secret is lost, you can reset the secret. The secret generated during device registration
cannot be retrieved.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Figure 1-3 Creating a device

----End

Connecting a Device Simulator to IoTDA

Step 1 Download MQTT.fx (64-bit OS) or MQTT.fx (32-bit OS) and install it.

Step 2 Open the MQTT.fx client and choose Extras > Edit Connection Profiles from the
menu bar. On the displayed page, set related parameters and click OK.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows-x64.exe
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/mqttfx-1.7.1-windows.exe

Figure 1-4 MQTT.fx connection parameters

Table 1-3 MQTT.fx connection parameters

Parame
ter

Description Example Value

Profile
Name

Name of
the
configuratio
n file.

Enter MQTT Test.

Profile
Type

Type of the
connection
to be
configured.

The value is fixed at MQTT Broker, indicating that the
MQTT server is connected.

Broker
Address

Access
address of
the MQTT
server.

MQTTS access address of the device. Obtain the access
address from Overview > Platform Access > MQTTS.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Parame
ter

Description Example Value

Broker
Port

Access port
of the
MQTT
server.

Enter 8883.

Client
ID

IoTDA can
send and
receive
messages
only after
device
access
authenticati
on is
successful.

Go to the device details page, find MQTT Connection
Parameter, and click View to check the clientId,
username, and password.

User
Name

Passwor
d

SSL/TLS -

Enable
SSL/TLS

Whether to
use the SSL
or TLS
encryption
protocol.

Yes.

Protocol Protocol
version.

TLS 1.2

CA
certifica
te file

CA
certificate
file.

Choose Overview > Platform Access > MQTTS and
click Download CA Certificate to obtain the CA
certificate file.

Step 3 After setting the parameters, click Connect. If the icon in the upper right corner
turns green, MQTT.fx has been connected to IoTDA. If the icon in the upper right
corner turns red, the connection fails. Click the Log tab to check logs, modify the
configuration based on the log information, and try again.

Figure 1-5 Device connection via MQTT.fx

If the information is correct, a device connection success is displayed in the log
and you can view the device status on IoTDA, as shown in the following figure.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Figure 1-6 Device connection via MQTT.fx succeeded

Step 4 Use MQTT.fx to send messages.

1. Click the Publish tab on the MQTT.fx client.
2. Enter the topic name in the Topic text box on the left, enter the message

content in the Message text box, for example, hello, and click Publish on the
right to send the message.

Figure 1-7 Message sending via MQTT.fx

3. On the IoTDA console, choose Devices > All Devices in the navigation pane.
On the displayed page, click View of the corresponding device. On the
Message Trace page, check the messages sent by MQTT.fx.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Figure 1-8 Message viewing via MQTT.fx

4. After MQTT.fx sends messages to the platform, configure data forwarding
rules to forward the messages to message middleware, storage, data analysis,
or service applications.

Step 5 Use MQTT.fx to receive messages.

1. Click the Subscribe tab on the MQTT.fx client.
2. On the displayed tab page, enter the topic name in the Topic text box on the

left and click Subscribe. After the topic is subscribed to, check the topic in the
subscription list.

Figure 1-9 Topic subscription via MQTT.fx

3. On the IoTDA console, choose Devices > All Devices in the navigation pane.
In the device list, click a device to go to its details page.

4. Click the Commands tab. Click Deliver Command in the Synchronous
Command Delivery area, select a command, enter the parameters to be
delivered, and click Yes.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Figure 1-10 Command delivery

5. On the MQTT.fx client, click the Subscribe tab. The message received from
the subscribed topic is displayed.

Figure 1-11 Message receiving

----End

1.3 Connecting NB-IoT Devices
This topic uses the NB-IoT device simulator as an example to describe how to
connect devices to IoTDA using CoAP for data reporting and command delivery.

Prerequisites
You have enabled the IoTDA service through your enterprise administrator.

Creating a Product

Step 1 Log in to the IoTDA console.

Step 2 Choose Products in the left navigation pane.

Step 3 Click Create Product in the upper right corner, set the parameters based on Table
1-1, and click OK.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Table 1-4 Creating a product

Parameter Description

Resource
Space

IoTDA automatically allocates the created product to the default
resource space.
● You can select another resource space from the drop-down list

box as you want.
● You can create a resource space in Resource Spaces and

allocate your products in it.

Product
Name

Enter a name unique in the resource space.

Protocol In this example, select CoAP.

Data Type In this example, select Binary. You need to develop a codec on
the IoTDA console to convert binary code data reported by
devices into JSON data. The devices can communicate with
IoTDA only after the JSON data delivered by IoTDA is parsed into
binary code.

Manufacture
r

Enter the manufacturer name of the device.

Device Type Set this parameter based on service requirements.

Step 4 On the product details page, add the service service, add the level property, add
the command command, and add the shift command parameter. For the
command parameter, set Data Type to Enumeration. The enumerated values are
ON and OFF, which are separated by commas (,).

Figure 1-12 Adding a service

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Figure 1-13 Adding a parameter

Step 5 On the Codec Development tab page, click the Edit Script tab, and copy the
script file content to the script box, as shown in Figure 1-14.

Figure 1-14 Codec development

Copy the following script content to the script box.

// Data delivery types
var EVENT_DOWN='event_down';
var PROPERTY_SET='property_set';
var COMMAND ='command';
var PROPERTY_GET='property_get';
// Data reporting types

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

var EVENT_UP = 'event_up';
var PROPERTIES_UP='property_report';
var MESSAGE_UP='message_up';
var COMMAND_RESPONSE='command_response';
var PROPERTY_SET_RESPONSE='property_set_response';
var PROPERTY_GET_RESPONSE='property_get_response';

var MSG_TYPE_LIST = {
 0: PROPERTIES_UP,
 1: EVENT_UP,
 2: MESSAGE_UP
};

// Command delivery to NB-IoT devices
var NBCOMMAND ='commands';

// Topic customization
 // Property reporting
var SELT_DEFINE_PROPERTIES_TOPIC='myTopic/propertiesReport';
// Event reporting
var SELT_DEFINE_EVENT_TOPIC='myTopic/EventUp';
// Message reporting
var SELT_DEFINE_MESSAGE_TOPIC='myTopic/MessageUp';
// Subscription to event delivery
var SELT_DEFINE_EVENT_DOWN_TOPIC='myTopic/EventDown';
// Subscription to command delivery
var SELT_DEFINE_COMMAND='myTopic/Command';
// Subscribe to property settings
var SELT_DEFINE_PROPERTIES_SET = 'myTopic/propertiesSet';
// Subscribe to property query
var SELF_DEFINE_PROPERTIES_GET = 'myTopic/propertiesGet';

function decode(message, context) {
 var result = {};
 if (invalid(message)) {
 return JSON.stringify(result);
 }
 var flag = fromUTF8Array(message.payload);
 var uint8Array = new Uint8Array(message.payload.length);
 for (var i = 0; i < message.payload.length; i++) {
 uint8Array[i] = message.payload[i] & 0xff;
 }

 var dataView = new DataView(uint8Array.buffer, 0);
 var transType = dataView.getInt8(0);
 if(transType == 0){
 var serviceId = 'service';
 var level = dataView.getInt8(1);
 var jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level}}]};
 var type = jsonObj.msg_type
 var messageObj = {
 msg_type: type,
 message: jsonObj
 }
 }else{
 var payloadObj = JSON.parse(fromUTF8Array(message.payload));
 var messageObj = {"msg_type":"command_response",
 "message":{"request_id":payloadObj.mid,
 "result_code": payloadObj.errcode,"result_desc":
"success","command_name":"reboot","service_id":"service","paras":payloadObj.body}}
 }
 return JSON.stringify(messageObj);
}

// Delivery from the server
function encode(msgType, message, context) {

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

 var jsonObj = JSON.parse(message);
 resultMessageObj = {
 uri: "19/0/0",
 payload: toUTF8Array(jsonObj.paras.shift)
 };
 resultObj = {
 action: "commands",
 message: resultMessageObj
 };
 return JSON.stringify(resultObj);
}

function invalid(message) {
 return message === null || JSON.stringify(message) == "{}";
}
//byte ->string
function fromUTF8Array(data) { // array of bytes
 var str = '';
 for (var i = 0; i < data.length; i++) {
 var value = data[i];
 if (value < 0x80) {
 str += String.fromCharCode(value);
 } else if (value > 0xBF && value < 0xE0) {
 str += String.fromCharCode((value & 0x1F) << 6 | data[i + 1] & 0x3F);
 i += 1;
 } else if (value > 0xDF && value < 0xF0) {
 str += String.fromCharCode((value & 0x0F) << 12 | (data[i + 1] & 0x3F) << 6 | data[i + 2] & 0x3F);
 i += 2;
 } else {
 // surrogate pair
 var charCode = ((value & 0x07) << 18 | (data[i + 1] & 0x3F) << 12 | (data[i + 2] & 0x3F) << 6 |
data[i + 3] & 0x3F) - 0x010000;
 str += String.fromCharCode(charCode >> 10 | 0xD800, charCode & 0x03FF | 0xDC00);
 i += 3;
 }
 }
 return str;
}
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}

function toUTF8Array(str) {
 var utf8 = [];
 for (var i = 0; i < str.length; i++) {
 var charcode = str.charCodeAt(i);
 if (charcode < 0x80) {
 utf8.push(charcode);
 } else if (charcode < 0x800) {
 utf8.push(0xc0 | (charcode >> 6),
 0x80 | (charcode & 0x3f));
 } else if (charcode < 0xd800 || charcode >= 0xe000) {
 utf8.push(0xe0 | (charcode >> 12),
 0x80 | ((charcode >> 6) & 0x3f),
 0x80 | (charcode & 0x3f));
 } else {
 // surrogate pair
 i++;
 charcode = 0x10000 + (((charcode & 0x3ff) << 10)

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

 | (str.charCodeAt(i) & 0x3ff))
 utf8.push(0xf0 | (charcode >> 18),
 0x80 | ((charcode >> 12) & 0x3f),
 0x80 | ((charcode >> 6) & 0x3f),
 0x80 | (charcode & 0x3f));
 }
 }
 return utf8;
}
function Str2Bytes(str){
 var pos = 0;
 var len = str.length;
 if(len %2 != 0)
 { return null; }
 len /= 2;
 var hexA = new Array();
 for(var i=0; i<len; i++)
 {
 var s = str.substr(pos, 2);
 var v = parseInt(s, 16);
 hexA.push(v);
 pos += 2;
 }
 return hexA;
}
//byte ->string
function fromUTF8Array(data) { // array of bytes
 var str = '';
 for (var i = 0; i < data.length; i++) {
 var value = data[i];
 if (value < 0x80) {
 str += String.fromCharCode(value);
 } else if (value > 0xBF && value < 0xE0) {
 str += String.fromCharCode((value & 0x1F) << 6 | data[i + 1] & 0x3F);
 i += 1;
 } else if (value > 0xDF && value < 0xF0) {
 str += String.fromCharCode((value & 0x0F) << 12 | (data[i + 1] & 0x3F) << 6 | data[i + 2] & 0x3F);
 i += 2;
 } else {
 // surrogate pair
 var charCode = ((value & 0x07) << 18 | (data[i + 1] & 0x3F) << 12 | (data[i + 2] & 0x3F) << 6 |
data[i + 3] & 0x3F) - 0x010000;
 str += String.fromCharCode(charCode >> 10 | 0xD800, charCode & 0x03FF | 0xDC00);
 i += 3;
 }
 }
 return str;
}

Step 6 Enter 0050 in the text box in the lower left corner and click Debug. After the
system displays a message indicating that the script debugging is successful, click
Deploy.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Figure 1-15 Script-based development

----End

Registering a Device
Step 1 In the left navigation pane, choose Devices > All Devices, click Register Device in

the upper right corner, set the parameters based on the table below, and click OK.

Table 1-5 Registering a device

Parameter Description

Resource
Space

Select the resource space that the device belongs to.

Product Select the product that the device belongs to.
You can select a product only when it is available on the
Products page. If not, create a product first. For details, see
Creating a Product.

Node ID Customize a unique physical identifier for the device. For an
NB-IoT device, this parameter is usually set to its IMEI or MAC
address.
The device ID and secret are returned after the registration, and
the device uses them to connect to IoTDA.

Device Name Enter a custom device name.

Authenticatio
n Type

Select Secret so that the device uses the secret for identity
verification.
NB-IoT devices do not support certificate authentication.

Secret Specify a secret used for device access. If no secret is specified,
IoTDA automatically generates one.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Step 2 Save the device ID and secret. They are used for authentication when the device
attempts to access IoTDA.

NO TE

If the secret is lost, you can reset the secret. The secret generated during device registration
cannot be retrieved.

----End

Performing Connection Authentication
Step 1 Download and decompress the NB-IoT device simulator, and double-click NB-

IoTDeviceSimulator_en.jar to run the simulator.

Figure 1-16 NB-IoT device simulator

The package contains the following files:

● Californium.properties: Simulator configuration file
● NB-IoTDeviceSimulator_en.jar: English simulator
● NB-IoTDeviceSimulator_zh.jar: Chinese simulator
● setting.properties: Configuration file for connecting the device simulator to

IoTDA

NO TE

To run the JAR package in Windows, install JDK 1.7 or later and configure environment
variables.

Step 2 When a message is displayed requesting you to confirm whether to enable DTLS
encrypted transmission, click Yes.

Figure 1-17 Enabling DTLS transmission

Step 3 Enter IP address and VerifyCode, and click Register Device to bind the simulator
to IoTDA.

Figure 1-18 Binding a device

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NBDeviceSimulator.zip

Set the three parameters as follows:
● IP Address: Domain name or IP address of IoTDA. To obtain the domain

name, log in to the IoTDA console and view the domain name on the
Overview page. To obtain the IP address or domain name, run the ping
DomainName command in the CLI.

● VerifyCode: Node ID set during device registration.
● psk: device secret generated by the IoT platform or entered during device

registration.

Step 4 On the IoTDA console, choose Devices > All Devices and view the device status. If
the device is online, the simulator is connected to IoTDA.

----End

Reporting Data

Step 1 Simulate data reporting. If the reporting level is 80, enter a hexadecimal code
stream 0050 in the NB-IoT device simulator. (00 indicates the message type, and
50 indicates the reporting level.) Then click Send Data.

Figure 1-19 Simulating device data reporting

Step 2 On the IoTDA console, choose Devices > All Devices, and click View in the row
that contains the device to access its details.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Step 3 On the device details page, check whether the reporting level is 80.

Figure 1-20 Checking reported data

----End

Delivering Commands

Step 1 On the device details page, click the Commands tab, and click Deliver Command
in the Asynchronous Commands area.

Step 2 In Application Simulator, select service for Service and command for
Command, set Command value to OFF, select Deliver Now, and click OK. See
the following figure.

CA UTION

Before delivering a command, you need to add the command to the
corresponding service in the product model.

Figure 1-21 Delivering Commands

Step 3 When the simulator displays a message asking you whether to respond to the
received message, click Yes.

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Figure 1-22 Receiving downstream messages from the platform

Step 4 Check whether the command status is Delivered on the console.

Figure 1-23 Checking the command status

----End

IoT Device Access(IoTDA)
User Guide 1 Getting Started

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

2 User Guide

2.1 Products

2.1.1 Creating a Product
The first step of using IoTDA is to create a product on the console.

A product is a collection of devices with the same capabilities or features.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Choose Products in the left navigation pane.

Step 3 Click Create Product on the page, set the parameters based on the following
table, and click OK.

Table 2-1 Creating a product

Parameter Description

Resource
Space

The platform automatically allocates the created product to the
default resource space.
● If you want to allocate the product to another resource space,

select the required resource space from the drop-down list.
● If the corresponding resource space does not exist, choose

Resource Spaces in the left navigation pane and create a
resource space.

Product
Name

Name the product. The product name is unique in the resource
space.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Parameter Description

Protocol ● MQTT can be used by devices to access the platform. The
data format can be binary or JSON.

● CoAP can be used by NB-IoT devices with limited resources
(including storage and power consumption). The data format
is binary.

● HTTP can be used by devices to access IoTDA. Currently, only
message reporting and property reporting are supported.

● Modbus can be used by devices to access IoTDA. Devices that
use the Modbus protocol to connect to IoTEdge nodes are
called indirectly connected devices. For differences between
directly connected devices and indirectly connected devices,
see Child Devices.

● OPC-UA can be used by devices to access IoTDA. Devices that
use the OPC UA protocol to connect to IoTEdge nodes are
called indirectly connected devices. For differences between
directly connected devices and indirectly connected devices,
see Child Devices.

● OPC-DA can be used by devices to access IoTDA. Devices that
use the OPC DA protocol to connect to IoTEdge nodes are
called indirectly connected devices. For differences between
directly connected devices and indirectly connected devices,
see Child Devices.

● Other is a type of extensible proprietary protocol used for
customizing product protocols.

Data Type ● JSON: The communication protocol between the platform and
devices uses the JSON format, which is a standard format
defined by the product model.

● Binary: You can develop codecs on the console to convert the
raw data reported by a device that includes binary code
streams into JSON-format data that complies with the
product model definition of the platform. You can also use
customized topics to transparently transmit the raw data.

Manufacture
r

Enter the manufacturer name of the device.

Device Type Enter StreetLight, GasMeter, or WaterMeter.
Set this parameter based on service requirements.

Advanced Settings

Product ID Set a unique identifier for the product. If this parameter is
specified, the platform uses the specified product ID. If this
parameter is not specified, the platform allocates a product ID.

Description Provide a description for the product. Set this parameter based
on service requirements.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Step 4 After a product is created, you can view it in the product list. You can click Delete
to delete a product that is no longer used. After the product is deleted, its
resources such as the product models will be cleared. Exercise caution when
deleting a product.

----End

2.1.2 Querying a Product
After a product is created in IoTDA, you can query the product in multiple
dimensions.

Step 1 Log in to the IoTDA console and choose Products in the navigation pane. The
product list is displayed.

Figure 2-1 Product list

Step 2 Search for a product by product name, product ID, or device type.
● Perform fuzzy search for products by product name. For example, select

Product Name and search for AB to obtain products whose names contain
"AB".

Figure 2-2 Fuzzy search

● Perform exact search for products by product ID. For example, select Product
ID and search for 682fe468911a192bfe8862f3 to obtain the product whose
ID is "682fe468911a192bfe8862f3".

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Figure 2-3 Exact search by product ID

● Perform exact search for products by device type. For example, select Device
Type and search for MQTT to obtain products whose device type is "MQTT".

Figure 2-4 Exact search by device type

Step 3 Delete product individually or in batches.

● Click Delete in the Operation column and delete a product as prompted.

● Select multiple products, click Delete above the table, and delete the selected
products as prompted.

----End

More Operations

Step 1 In the product list, click View in the row where the product is located. On the
product details page displayed, you can view basic product information, such as
the product ID, product name, device type, data type, manufacturer name,
resource space, and protocol type. The product ID is automatically generated by
IoTDA. Other information is defined by you during product creation.

Figure 2-5 Product details

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Step 2 On the product details page, you can develop product models and codecs. For
details, see "Product Development" in Developer Guide of the corresponding
service version.

----End

2.1.3 Exporting a Product
After a product is created in IoTDA, you can export products by resource space or
specify products in a specific resource space to export. For details about
restrictions on export tasks, see Exporting Device Information.

Exporting a Specified Product

Step 1 In the navigation pane, choose Products, click the Product Export tab, and click
Create Export Task. On the page displayed, select By product, select a resource
space, and select the product to export. Click OK.

Step 2 After the export is complete, click Download in the export task list to obtain the
product file.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Exporting Products by Resource Space

Step 1 In the navigation pane, choose Products, click the Product Export tab, and click
Create Export Task. On the page displayed, select By resource space and select a
resource space. Click OK.

Step 2 After the export is complete, click Download in the export task list to obtain the
product file.

----End

2.2 Devices

2.2.1 Registering a Device

2.2.1.1 Registering an Individual Device

A device is a physical entity that belongs to a product. Each device has a unique
ID. It can be a device directly connected to IoTDA, or a gateway that connects
child devices to IoTDA. You can register a physical device with IoTDA, and use the
device ID and secret allocated by IoTDA to connect your SDK-integrated device to
IoTDA.

IoTDA allows an application to call the API Creating a Device to register an
individual device. Alternatively, you can register an individual device on the
console. This topic describes the procedure on the IoTDA console.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices, click Register Device in
the upper right corner, set the parameters based on Table 2-2, and click Yes.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Table 2-2 Registering a device

Parameter Description

Resource
Space

Select the resource space to which the device belongs.

Product Select the product to which the device belongs.
You can select a product only when it is available on the
Products page. If no product is available, create a product first.
For details, see Products.

Node ID Specify a unique physical identifier for the device, such as its
IMEI or MAC address. This parameter is used by IoTDA to
authenticate the device during device access.
● For a native MQTT device, this parameter is customized. The

device ID (corresponding to the node ID) and secret
generated after the registration are used for device access.

● For an NB-IoT device or a device integrated with the SDK,
set the node ID to the IMEI or MAC address. The device
connects to the platform using the node ID and secret
entered during registration.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Parameter Description

Device Name Customize the name of the device.

Device ID It uniquely identifies a device. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of [product_id]_ [node_id].

Device
Description

Describe the device.

Authenticatio
n Type

Secret: The device uses the secret for identity verification.
X.509 certificate: The device uses an X.509 certificate for
identity verification. Before registering a device authenticated
by an X.509 certificate, upload the device CA certificate to
IoTDA and bind the device certificate to the device during
device registration. For details, see Device CA Certificates. The
server can skip the device CA certificate verification through
configuration. However, this may pose high security risks. For
details, see the O&M Guide.

Secret This parameter is displayed when Authentication Type is set to
Secret. You can customize a device secret. If you leave it blank,
IoTDA automatically generates one.

Confirm
Secret

Keep it the same as the entered secret.

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Enter the fingerprint of Presetting an X.509
Certificate. You can run the openssl x509 -fingerprint -
sha256 -in deviceCert.pem command in the OpenSSL view to
query the fingerprint.
Note: Delete the colons (:) from the obtained fingerprint
when filling it.

Step 3 Save the device ID and secret. They are used for authentication when the device
attempts to access IoTDA.

NO TE

If the secret is lost, click Reset Secret on the Overview tab page of the device to reset the
secret. The secret generated during device registration cannot be retrieved.

You can delete a device that is no longer used from the device list. Deleted devices
cannot be retrieved. Exercise caution when performing this operation.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

2.2.1.2 Registering a Batch of Devices

IoTDA allows an application to call the API Creating a Batch Task to register a
batch of devices. Alternatively, you can perform batch registration on the console.
This topic describes how to use the IoTDA console to register a batch of devices.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices, click the Batch
Registration tab, and then click Create Task.

Step 3 Download the batch device registration template and fill in it. On the Create Task
dialog box, enter the task name, select the resource space, upload the template
file, and click Yes.

NO TE

● Enter a device secret in the template. If you leave it blank, the platform automatically
generates one. If the secret is lost, you can reset the secret. The secret generated during
device registration cannot be retrieved.

● A batch registration file to be uploaded can contain up to 30,000 lines.

● Batch device registration tasks are automatically deleted from the task list after 30 days.

----End

2.2.1.3 Exporting Batch Device Registration/Deletion Details

You can export batch device registration or deletion details to an Excel file. The
following describes how to export batch device registration details. For details
about restrictions on export tasks, see Exporting Device Information.

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices, click the Batch
Registration tab to view batch registration tasks. Click Export. Then, download
and view batch device registration details.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

----End

2.2.2 Managing a Device

2.2.2.1 Viewing and Deleting a Device
After a device is registered on IoTDA, you can manage the device, view device
information, and freeze the device on the console.

In the navigation pane of the console, choose Devices > All Devices. By default,
all devices under your account are displayed in the device list.

● You can click the text box above the list to search for devices by resource
space, product name, device status, node type, registration time, device name,
node ID, and device ID. Device name and node ID support fuzzy search by
prefix. For example, if there are devices prefixed with abc, you can enter abc
to search for the devices. Currently, device names and node IDs can contain
only digits and letters. Device ID only supports exact search.

● You can also click Advanced Search in the upper right corner of the device
list to search for devices by exact tag or asset attribute.

● You can view the device statuses, device name, node ID, and device details.
● You can click Delete in the row of a device to delete the device, or you can

delete devices in batches.

NO TE

After a device is deleted, the related device data is deleted. Exercise caution when
performing this operation.

Device Statuses
You can view the device status (online, offline, inactive, or frozen) on the IoTDA
console. The table below describes the device statuses.

Statu
s

Short-Connection Device (Such
as NB-IoT Devices)

Persistent Connection Device
(MQTT Device)

Onlin
e

If the device has been registered
and gone online within 49 hours,
the device status is Online.

The device is always connected to
the platform.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Statu
s

Short-Connection Device (Such
as NB-IoT Devices)

Persistent Connection Device
(MQTT Device)

Offlin
e

If the device has not been
registered and gone online for
more than 49 hours after
connecting to the platform, the
platform sets the device status to
Offline.

After the device is disconnected
from the platform for 1 minute
(the data is automatically updated
every minute), the device status is
set to Offline.
If you manually refresh the status
on the page, the device status is
displayed as Offline.

Inacti
ve

The device is registered with but
does not connect to the platform.
Initialize the device to connect it
to the platform.

The device is registered with but
does not connect to the platform.
Initialize the device to connect it to
the platform.

Froze
n

The device is frozen and cannot
be controlled.

The device is frozen and cannot be
controlled.

Device Details
In the device list, click View in the row of a device to access its details.

Paramet
er

Description

Overview ● Viewing device information: You can view basic device
information, including the node ID, device ID, node type, software
version, and firmware version.
– Node ID is a unique physical identifier for the device, such as

its IMEI or MAC address. This parameter is used by IoTDA to
authenticate the device during device access.

– Device ID uniquely identifies a device. It is allocated by IoTDA
during device registration and used for device access
authentication and message transmission.

● Resetting a secret: The secret is used for authentication when
MQTT devices, NB-IoT devices, or SDK-integrated devices access
IoTDA. After the secret is reset, the new secret must be updated
on the device, and the device must carry the new secret for
authentication during platform connection.

● Viewing the latest reported data: View the latest data reported by
the device to the platform.

Device
Shadow

The platform provides the device shadow to cache the device status.
After the device goes online, the platform delivers the cached
property setting command to the device. The device can also
proactively obtain the shadow data of the device from the platform.
For details, see Device Shadow.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Paramet
er

Description

Comman
ds

You can create a command delivery task for an individual device on
the console. For details, see Command Delivery.

Message
Trace

You can use message trace to record operation information, status,
and results during device running. When a fault occurs in service
scenarios such as data reporting and command response, message
trace can help you quickly locate the fault and analyze the cause.
For details, see Message Trace.

Child
Devices

Devices can be directly or indirectly connected to IoTDA. Indirectly
connected devices access IoTDA through gateways. For details, see
Child Devices.

Tag You can define tags and bind tags to devices. For details, see
Groups.

Asset
Propertie
s

You can set asset properties on the device only after adding asset
properties to the product. For details, see Asset Properties.

Device
Monitori
ng

● IoTDA provides the device security center, which provides security
detection and offline analysis. For details, see Device Security
Center.

Deleting a Batch of Devices
NO TE

● A batch deletion file to be uploaded can contain up to 30,000 lines.
● Batch device deletion tasks are automatically deleted from the task list after 30 days.

To delete devices in batches on the console, perform the following steps:

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices, click the Batch
Deletion tab, and then click Create Task.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Step 3 Specify the parameters, download the batch device deletion template, enter the
device IDs to delete in the template, and upload and submit the template file.

The task execution status and result are displayed. If the success rate is not 100%,
click the task name to open the task details page and view the failure cause.

----End

2.2.2.2 Exporting Device Information
IoTDA allows users to export information of all created devices to XLS files.

NO TE

● The system allows a maximum of five concurrent export tasks because they consume
many resources.

● A maximum of five export tasks can be in the Waiting state at a time. A successfully
executed export task will be automatically deleted in one day. An export task that has
been created for two days will be deleted regardless of whether it is successfully
executed.

● A maximum of 100 export tasks can be created. If the limit is reached, you must delete
existing export tasks before creating new ones.

● If a task is in the Waiting state, you cannot create another export task that has the
same configuration as the current task.

● All types of export tasks are restricted by the preceding rules. For example, the total
number of tasks in the Waiting state cannot exceed 5, regardless of whether the tasks
are for product export, device export, or software/firmware upgrade.

Creating an Export Task

Step 1 In the navigation pane, choose Devices > All Devices > Device Export.

Step 2 Click Device Export, select the resource space ID and product ID of the device list
to be exported, and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

----End

Querying an Export Task

Step 1 In the navigation pane, choose Devices > All Devices > Device Export. Created
export tasks will be displayed on the page.

Step 2 Select a resource space from the drop-down list in the upper right corner. Then,
the export tasks under the selected resource space are displayed. After an export
task is created, click the refresh button. The export task status is displayed as
completed.

Step 3 After an export task is complete, you can click Download to export the file to the
local PC or click Delete to delete the export task.

----End

2.2.2.3 Device Authentication

Overview
IoTDA authenticates a device when the device attempts to access the platform.
The authentication process depends on the access method.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Access Type Authentication Mode

Device using CoAP A device is registered, either by using an application to call
the API Creating a Device or using the console. If the
device is a non-security device, it uses the node ID to get
authenticated and connect to IoTDA, as shown in Figure
2-6.

Device using
native MQTT or
MQTTS

Secret for authentication
A device is registered, either by using an application to call
the API Creating a Device or using the console. The device
ID and secret returned by IoTDA are also hardcoded into
the device. A CA certificate is preset on MQTTS devices,
but not MQTT devices. The device uses the device ID and
secret to get authenticated and connect to IoTDA, as
shown in Figure 2-7.

Authentication for Devices Using CoAP

Figure 2-6 Authentication for devices using CoAP

1. An application calls the API Creating a Device to register a device on IoTDA.
Alternatively, you can use the console to register a device.

2–3. IoTDA allocates a secret to the device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

NO TE

The secret can be defined during device registration. If no secret is defined, the platform
allocates one.

4. The user hardcodes the secret into the device hardware, software, or firmware.

5. After being powered on, the device sends a connection request carrying the
node ID (such as the IMEI) and secret if it is a security device, or carrying the node
ID if it is a non-security device.

6–7. If the authentication is successful, IoTDA returns a success message, and the
device is connected to the platform.

Authentication for Devices Using Native MQTT or MQTTS

Figure 2-7 Authentication for devices using native MQTT or MQTTS

1. An application calls the API Creating a Device to register a device on IoTDA.
Alternatively, you can use the console to register a device.

NO TE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

2. IoTDA allocates a globally unique device ID and secret to the device.

NO TE

The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

3. The user hardcodes the device ID and secret to the device hardware, software,
or firmware.

4. (Optional) Preset the CA certificate on the device. This step is required only
for devices connected using MQTTS.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

5. After being powered on, the device sends a connection request carrying the
device ID and secret.

6. If the authentication is successful, IoTDA returns a success message, and the
device is connected to the platform.

2.2.2.4 Device Shadow

Overview
IoTDA allows you to create device shadows. A device shadow is a JSON structure
that stores the latest device properties reported and device configuration to
deliver. Each device has only one shadow. A device can retrieve and set its shadow
to synchronize properties, either from the shadow to the device or from the device
to the shadow.

The device shadow includes Desired Value and Reported Value.
● The desired value is used to store the configuration of device properties. To

modify the service properties of a device, you can modify the desired value of
the device shadow. When the device goes online, the device needs to
subscribe to the topic of platform property settings first, and then the device
properties will be synchronized to the device.

● The reported value is used to store the latest device properties reported by
the device. When the device reports data, IoTDA changes the properties in the
reported section to those reported by the device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

NO TE

● You can configure the device shadow by calling the application API or by clicking
Configure Property on the Device Shadow tab page of the device details page on
the IoTDA console. (The device shadow is mainly used to configure device
properties. Its configuration depends on the product model.)

● The device shadow configuration is an asynchronous command. IoTDA directly
returns a configuration response. Then, the platform determines whether to deliver
the configuration immediately or cache the configuration based on the device
status.

● When the device goes online, the device shadow delivers the desired properties to
the device. After the device reports its properties, the device shadow checks
whether the reported properties match the delivered ones. If they match, the
shadow data is configured on the device and the cache is cleared. If they do not
match, the shadow data fails to be configured on the device. When the device goes
online or reports properties next time, the platform delivers the desired properties
to the device again until the configuration delivery is successful.

Application Scenarios
The device shadow is applicable to devices with limited resources and low power
consumption or devices in the dormant state for a long time.

● Querying the latest data reported by the device and the latest online status of
the device:
– You may not be able to query the console for the mostly recent data

because the device is offline or the network is unstable. With the device
shadow, the platform can obtain the data from the shadow.

– There may be too many applications simultaneously querying the device.
IoT devices typically have limited processing capabilities, so too many
queries can adversely affect their performance. With the device shadow,
the device can synchronize its status to the shadow just once. The
applications can obtain the device status from the device shadow,
without reaching the real device.

● Modifying device properties: You can modify device properties on the device
details page. Because the device may be offline for a long time, the modified
device properties cannot be delivered to the device in time. In this case, IoTDA
stores the modified device properties in the device shadow. When the device
goes online, the device needs to subscribe to the topic of platform property
settings first, and then the device properties will be synchronized to the
device.

Service Process
Modifying a Device Property

For modifying the desired property (desired value) of the device shadow, when the
device goes online, the device needs to subscribe to the topic of platform property
settings first, and then the device properties will be synchronized to the device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

1. A user modifies a device property on the console or application. The following
is an example message. For details, see "Device Shadow" in the API Reference.
PUT https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/shadow
Content-Type: application/json
X-Auth-Token: ********
Instance-Id: ********

{
 "shadow" : [{
 "desired" : {
 "temperature" : "60"
 },
 "service_id" : "WaterMeter",
 "version" : 1
 }]
}

2. IoTDA modifies the desired property.
3. IoTDA returns a response.
4. IoTDA determines that the device goes online or reports data.
5. IoTDA synchronizes device properties to the device.
6. The device returns a response.
7. When the device reports data, IoTDA changes the properties in the reported

section to those reported by the device.

Querying Device Properties

The device shadow saves the most recent device properties. Once the device
properties change, the device synchronizes the changes to the device shadow.
Using the device shadow, a user can obtain the device status quickly regardless of
whether the device is online.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

1. A user queries device properties on the console or application. Example
message:
GET https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/shadow
Content-Type: application/json
X-Auth-Token: ********
Instance-Id: ********

2. IoTDA returns the desired and reported properties. Example message:

Status Code: 200 OK
Content-Type: application/json

{
 "device_id" : "40fe3542-f4cc-4b6a-98c3-61a49ba1acd4",
 "shadow" : [{
 "desired" : {
 "properties" : {
 "temperature" : "60"
 },
 "event_time" : "20151212T121212Z"
 },
 "service_id" : "WaterMeter",
 "reported" : {
 "properties" : {
 "temperature" : "60"
 },
 "event_time" : "20151212T121212Z"
 },
 "version" : 1
 }]
}

Querying and Modifying a Device Shadow

Querying a Device Shadow

Method 1: Call the API Querying a Device Shadow.

Method 2: Log in to the console. In the left navigation pane, choose Devices > All
Devices. Click View in the row of a device to access its details. On the Device
Shadow tab page, you can view the device properties, including reported and
desired values.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

● If the reported value is inconsistent with the desired value, the desired value is
highlighted. This may occur when the device is offline and the value is still in
the device shadow waiting to be synchronized to the device.

● If the reported value matches the desired value, the desired value is not
highlighted. The latest property reported by the device matches the desired
property.

Modifying a Device Shadow

Method 1: Call the API Configuring Desired Device Shadow Data.

Method 2: Log in to the console. In the left navigation pane, choose Devices > All
Devices. Click View in the row of a device to access its details. On the Device
Shadow tab page, click Configure Property and enter the desired values of the
service properties.

2.2.2.5 Child Devices

Overview
Devices can be directly or indirectly connected to IoTDA. Indirectly connected
devices access IoTDA through gateways.

Devices that do not support TCP/IP cannot directly communicate with IoTDA, and
need to use gateways as media.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Service Process

You can use the APIs provided by IoT Device SDKs to connect devices to IoTDA
through gateways. API names of the SDK vary depending on the language. For
details, see "Using IoT Device SDKs for Access" in Developer Guide.

1. Create a product and register a gateway on the platform.
2. The gateway calls the Authentication API to go online.
3. After the gateway is authenticated, you can add child devices. After the child

device is added, you can view it.
4. The status of the newly added child device is still displayed as Inactive on the

console. This is because the gateway has not reported the latest status of the
child device to the platform. Call the API Updating the Child Device Status
after the child device is added or before the child device reports data.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

NO TE

The status of a child device indicates whether the child device is connected to the
gateway, and the gateway reports the status to IoTDA for status updates. If the
gateway does not report the status of a child device, the child device status is not
updated on the platform. For example, after a child device connects to IoTDA through
a gateway, the child device status is displayed as online. If the gateway is disconnected
from IoTDA, the gateway can no longer report the child device status and IoTDA will
consider the child device online.

5. The gateway calls the API Batch Reporting Device Properties to report the
data of the child device. The parameters in the API request are the
information about the gateway and the child device.

6. The gateway subscribes to a topic for command delivery, and receives and
processes events delivered by the application or IoTDA platform.

7. The application calls the API Deleting a Device to deliver the event of
deleting the child device to the gateway. The gateway deletes the device upon
receiving the event.

NO TE

When an API is called to add or delete a child device on IoTDA, the platform delivers an
operation event to the gateway. Then, the gateway processes the child device addition or
deletion events. When a child device is added or deleted on IoTDA but the gateway is
offline, the platform caches the event (for a maximum of one day) and delivers the event
after the gateway goes online.

Connecting a Gateway to IoTDA
The device reports data to the gateway by integrating the SDK on the gateway,
and then the gateway forwards the data to IoTDA. For details about how to
connect the gateway to IoTDA, see "Development on the Device Side" > "Using
IoT Device SDKs for Access" in Developer Guide.

Adding a Child Device
Method 1

After a gateway is connected to IoTDA, call the API Creating a Device to connect
the child device to IoTDA.

Method 2

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices. On the device list, click
View in the row of a gateway to access its details, and click the Child Devices tab
> Add Child Device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Step 3 Enter basic information and click Yes.

----End

Viewing a Child Device

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices. On the device list, click
View in the row of a gateway to access its details.

Step 3 On the Child Devices tab page, view the status, ID, and type of the child devices
connected to IoTDA through the gateway.

Step 4 Click View in the row of a specific child device on the Child Devices tab page to
view its details.

----End

2.2.2.6 Tags

You can define tags and bind tags to devices. Tags are used to classify devices. You
can bind tags to devices on the device details page.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices, and click View to open
the device details page.

Step 3 On the Tags tab, click Bind Tags to bind one or more tags to the device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

----End

2.2.2.7 Asset Properties
Asset properties are used to manage assets. Asset properties of a device consist of
a group of predefined fields. The field types can be Number, String, or Boolean.
Restrictions on asset properties are defined by products. That is, products can
predefine asset properties (including field names, types, and restrictions). When
device asset properties are created or modified, they must match the asset
properties defined by the product. Otherwise, the asset properties cannot be
saved.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Products. In the product list, click the name of
the product to which your device belongs to go to the Products page.

Step 3 Click the Asset Properties tab, click Add Field, and set parameters based on
Table 2-3.

Table 2-3 Adding a field

Parameter Description

Name Property name.

Alias Property alias.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Parameter Description

Type Select a type.
● Number

– Min Value: minimum value of the number type.
– Max Value: maximum value of the number

type.
● String

– Max Length: maximum length of the string.
– Regular Expression: used to verify the format of

asset properties of the string type.
– Enumerated Values: values available for

field_value of asset properties of the string
type.

● Boolean: none.

Mandatory By default, this parameter is disabled.

Available for Search If you enable the search function, the asset property
can be used for advanced search.
NOTE

● After adding a field, you need to edit the device asset
property value again for the field to take effect in
advanced search.

● A maximum of five asset fields can be searched for at the
same time for a single product.

Default Value Customize a default value.
NOTE

After setting a default value, you need to edit the device
asset property value again for the field to take effect in
advanced search.

Step 4 In the left navigation pane, choose Devices > All Devices, click the device of your
product to go to its details page.

Step 5 Click the Asset Properties tab to set the asset properties of the device.

----End

2.2.2.8 Cloud O&M Configuration
IoTDA delivers O&M configuration to devices through device events, implementing
collaborative management of device configuration on the cloud.

Step 1 Log in to the IoTDA console and obtain the application access address on the
Overview page.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Figure 2-8 Querying the application access address

Step 2 Call the API to deliver O&M configuration through events (using Postman as an
example). In the following example, service_id are set to $device_config, and
event_type is set to DEVICE_OM_CONFIG. ip indicates the application access
address, device_id indicates the ID of the target device, and project_id indicates
the project ID.
uri: https://{ip}/v5/iot/{project_id}/devices/{device_id}/events
Request body:
{
 "service_id": "$device_config",
 "event_type": "DEVICE_OM_CONFIG",
 "paras": {
 "log_report_size": 10,
 "log_report_frequency": 1
 }
}

Figure 2-9 Delivering device O&M policies

----End

2.2.2.9 Device Configuration Detection
Devices report their configuration to IoTDA through property reporting, so that
IoTDA can detect and manage device configuration.

Step 1 Report the device configuration value. Report the device configuration by referring
to IoT Device Access (IoTDA) 25.9.0.SPC002 Usage Guide (for Huawei Cloud Stack
8.6.0) > IoT Device Access (IoTDA) 25.9.0.SPC002 API Reference (for Huawei Cloud
Stack 8.6.0) > "API on the Device Side" > "Device Properties". In the following

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

example, value1, value2, and value3 are sample values, and $device_sys_config is
the service ID of the device configuration to be reported.

NO TE

$device_sys_config is a system-level service ID. Distinguish it from the service ID defined in
the product model.

Example of device configuration reporting:
{
 "services": [
 {
 "service_id": "$device_sys_config",
 "properties": {
 "value1": 32,
 "value2": 33,
 "value3": 34
 },
 "event_time": "20240826T103212Z"
 }
]
}

Step 2 Check the configuration reported by the device. In the navigation pane, choose
Devices > All Devices. Click the Device List tab, click the device name to access
its details page, and go to the maintenance page to check the configuration
reported by the device.

Figure 2-10 Checking device configuration

----End

2.2.3 Groups
A group is a collection of devices. You can create groups for all the devices in a
resource space based on different rules, such as regions and types, and you can
operate the devices by group. For example, you can perform a firmware upgrade
on a group of water meters in the resource space. Devices in a group can be
added, deleted, modified, and queried. A device can be bound to and unbound
from multiple groups.

Constraints
● A maximum of 20,000 devices can be added to a group.
● A device can be bound to a maximum of 10 groups.

Managing Groups

Step 1 Log in to the IoTDA console.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Step 2 In the navigation pane, choose Devices > Groups.

Step 3 Click the buttons to add or delete a group.

Icon Description

Add a root group. The group name and description can be
customized.

Add a child group. The group name and description can be
customized.

Delete a selected group. The deletion operation cannot be
undone.
Before deleting a group, unbind devices from the group and
delete its lower-level groups.

----End

Binding or Unbinding a Device
After adding a group, you can bind a device to or unbind a device from the group.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Devices > Groups.

Step 3 Select a group, click the Bound Devices tab, and click buttons to bind or unbind
devices.

Icon Description

Bind Bind a device to a group.

Unbind Unbind a device from a group.

----End

2.2.4 Software/Firmware Upgrades

2.2.4.1 Overview
Firmware is like a device driver for the hardware. It is responsible for the
underlying work of a system, for example, the basic input/output system (BIOS)
on a computer mainboard. Firmware upgrade, also called firmware over the air

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

(FOTA), allows users to upgrade the firmware of MQTT or LwM2M devices in OTA
mode.

Software includes system software and application software. The system software
provides the basic device functions, such as the compilation tool and system file
management. The application software provides functions such as data collection,
analysis, and processing, depending on the features the device provides. Software
upgrade, also called software over the air (SOTA), allows users to upgrade the
software of MQTT devices in OTA mode. For an MQTT product model, the
software upgrade protocol is not verified.

NO TE

Currently, software upgrades support only MQTT devices, and firmware upgrades support
only MQTT or LwM2M devices.

Figure 2-11 Software/firmware upgrade for devices using MQTT

The FOTA upgrade process for devices using MQTT starts from the device
subscribing to the upgrade topic. For details about the upgrade topic, see "API
Reference on the Device Side" > "Software and Firmware Upgrade APIs" in API
Reference. The main steps are as follows:

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

1. A user uploads a firmware or software package on the IoTDA console.
2. The user creates an upgrade task on the console or application server.
3. The platform checks whether the device is online and triggers the upgrade

negotiation process immediately when the device is online. If the device is
offline, the platform waits for the device to go online and subscribe to the
upgrade topic. After detecting that the device goes online, the platform
triggers the upgrade negotiation process.

4. The platform delivers a command to query the device version.
5. After the query is successful, the platform determines whether the device

needs to be upgraded based on the target version.
– If the returned version is the same as the target version, no upgrade is

required. The upgrade task is marked successful.
– If the returned version is different from the target version and this version

supports upgrades, the platform continues the upgrade.
6. The platform delivers the package information.
7. The device downloads the upgrade package through the protocol.

– If the download type is HTTPS, the platform delivers the URL, token, and
package information. The user downloads the upgrade package using
HTTPS based on the URL and token. The token is valid for 24 hours.

8. The device performs the upgrade. After the upgrade is complete, the device
returns the upgrade result to the platform.

9. The platform notifies the console or application of the upgrade result.

2.2.4.2 Firmware Upgrades

Overview
Firmware is like a device driver for the hardware. It is responsible for the
underlying work of a system, for example, the basic input/output system (BIOS)
on a computer mainboard.

Firmware upgrade, also called firmware over the air (FOTA), allows you to
upgrade the firmware of LwM2M or MQTT devices in OTA mode.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Firmware Upgrade for Devices Using LwM2M

The firmware upgrade process for a device using LwM2M is as follows:

1. A user uploads a firmware package on the IoTDA console.

2. The user creates an upgrade task on the console or application server.

3. The LwM2M device reports data to the platform. The platform detects that
the device is online and triggers the upgrade negotiation process. (The
timeout interval is 24 hours.)

4. The platform delivers a command to the device to query the device firmware
version.

5. After the query is successful, the platform determines whether the device
needs to be upgraded based on the target version. (In 4, the timeout interval
for the device to report the firmware version is 3 minutes.)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

– If the returned firmware version is the same as the target version, no
upgrade is required.

– If the returned firmware version is different from the target version, the
platform continues the upgrade.

6. The platform queries the radio coverage of the cell where the device resides,
and obtains the cell ID, reference signal received power (RSRP), and signal to
interference plus noise ratio (SINR). (The timeout interval for the reporting of
the radio coverage level and cell ID is about 3 minutes.)
– If the query is successful, the IoT platform calculates the number of

concurrent upgrade tasks based on the following methods and continues
with 9.

▪ RSRP and SINR in range 0: 50 devices in the cell can be upgraded
simultaneously.

▪ RSRP in range 0 and SINR in range 1: 10 devices in the cell can be
upgraded simultaneously.

▪ RSRP in range 1 and SINR in range 2: Only one device in the cell can
be upgraded at a time.

▪ RSRP and SINR can be queried but are not within any of the three
ranges: Only one device in the cell can be upgraded at a time.

NO TE

If only a small number of devices can be upgraded simultaneously, you can
contact the local carrier to see if coverage can be improved.

– If the query fails, the process continues with 8.
7. The operation proceeds according to the wireless coverage level.
8. The platform delivers a command to query the cell ID of the device.

– If the query is successful, 10 devices in the cell can be upgraded
simultaneously.

– If the query fails, the upgrade fails.
9. The platform subscribes to the firmware upgrade status from the device.
10. The platform delivers the URL of the firmware package to the device.
11. The platform instructs the device to download the firmware package. The

device downloads the firmware package from the URL. After the download is
complete, the device notifies the platform. Firmware packages can be
downloaded in segments, and resumable download is supported. (The
timeout interval is 60 minutes.)

12. The platform delivers the upgrade command to the device. The device
performs the upgrade.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

13. After the upgrade is complete, the device notifies the platform. (The timeout
interval for the device to report the upgrade result and status is 30 minutes.)

14. The platform delivers a command to query the firmware upgrade result.
15. After obtaining the upgrade result, the platform unsubscribes from the

upgrade status notification from the device.
16. The platform notifies the console and application server of the upgrade result.

Uploading a Firmware Package

On the IoTDA console, you can upload a firmware package to the Firmware List
page for management.

NO TE

You need to provide and directly upload the upgrade file delivered to the device. The
platform does not restrict the content of the upgrade file.

Procedure:

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > Software/Firmware Upgrades.

Step 3 Choose Manage Resource Package > Firmware List, and click Upload.

Step 4 On the page displayed, set the parameters based on Table 2-4, and click OK to
upload a firmware package.

Table 2-4 Uploading firmware

Parameter Description

Firmware File Add a firmware package. The firmware package name cannot
contain the special characters: +/?%#|;&=. The size of the
upgrade package cannot exceed 1 GB. ZIP, BIN, RAR, and BZ2
packages are supported by default.

Firmware
Version

Version of the firmware package.

Product Select the corresponding product model.

Download
Protocol

Select the protocol for downloading the upgrade package.

Source
Versions

Enter the version manually. To add multiple versions, press
Enter after inputting one version, and then input the next. If
you do not enter any version numbers, the device of any
version can be upgraded. If you enter version numbers, the
firmware version reported by the device must exactly match
any of the entered versions. Otherwise, the upgrade fails.

Firmware
Package
Fragment Size

Size of each segment of the firmware package downloaded by
the device, in bytes. The value ranges from 32 to 500. The
default value is 500.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Parameter Description

Description Description of the upgrade package.

----End

Upgrading the Firmware for a Batch of Devices
There are two ways to upgrade the firmware for a batch of devices:
1. The application calls the API Creating a Batch Task to create an upgrade task

for a batch of devices.
For details, see "API Reference on the Application Side > Batch Task APIs >
Creating a Batch Task" in API Reference.

2. Create a firmware upgrade task on the IoTDA console.

NO TE

Batch firmware upgrade tasks are automatically deleted from the task list after 30
days.

The following describes how to create a firmware upgrade task for a batch of
devices on the console.

Procedure:

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > Software/Firmware Upgrades, and
click Create Upgrade Task.

Step 3 On the Firmware Upgrades tab page, click Create Task.

Step 4 Set the basic information, including the task name and retry policy, and enable the
retry function.

If Retry is enabled, you can set the number of retry attempts and retry interval.
You are advised to set Retry Attempts to 2 and Retry Interval to 5 minutes. If an
upgrade fails, the upgrade will be retried 5 minutes later.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Step 5 Select a firmware package.

Step 6 Select the device group to upgrade and click Create Now.

For details on how to create a group and add devices to the group, see Groups.

Step 7 View the result on the task list. You can click View to view the result for each
device on the Execution Details page.

Step 8 On the Execution Details page, you can stop subtasks that are being processed or
to be processed, and retry failed or stopped subtasks.

----End

2.2.4.3 Software Upgrade

Overview
Software includes system software and application software. The system software
provides the basic device functions, such as the compilation tool and system file
management. The application software provides functions such as data collection,
analysis, and processing, depending on the features the device provides.

Uploading a Software Package
On the IoTDA console, you can upload a software package to the Software List
page for management.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

NO TE

You need to provide and directly upload the upgrade file delivered to the device. The
platform does not restrict the content of the upgrade file.

Procedure:

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > Software/Firmware Upgrades.

Step 3 Choose Manage Resource Package > Software List, and click Upload.

Step 4 On the page displayed, set the parameters based on Table 2-5, and click OK to
upload a software package.

Table 2-5 Uploading a software package

Parameter Description

Software File Add a software package. The software package name cannot
contain the special characters: +/?%#|;&=. The size of the
upgrade package cannot exceed 1 GB. ZIP, BIN, RAR, and BZ2
packages are supported by default.

Software
Version

Version of the software package.

Product Select the corresponding product model.

Download
Protocol

Select the protocol for downloading the upgrade package.

Source
Versions

Enter the version manually. To add multiple versions, press
Enter after inputting one version, and then input the next. If
you do not enter any version numbers, the device of any version
can be upgraded. If you enter version numbers, the software
version reported by the device must match any of the entered
versions. Otherwise, the upgrade fails. Wildcards (* and ?) are
supported.

Software
Package
Segment Size

Size of each segment of the software package downloaded by
the device, in bytes. The value ranges from 32 to 500. The
default value is 500.

Description Description of the upgrade package.

----End

Upgrading the Software for a Batch of Devices
There are two ways to upgrade the software for a batch of devices:

1. The application calls the API Creating a Batch Task to create an upgrade task
for a batch of devices.
For details, see "API Reference on the Application Side > Batch Task APIs >
Creating a Batch Task" in API Reference.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

2. Create a software upgrade task on the IoTDA console.

NO TE

Batch software upgrade tasks are automatically deleted from the task list after 30
days.

The following describes how to create a software upgrade task for a batch of
devices on the console.

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > Software/Firmware Upgrades, and
click Create Upgrade Task.

Step 3 On the Software Upgrades tab page, click Create Task.

Step 4 Set the basic information, including the task name and retry policy, and enable the
retry function.

If Retry is enabled, you can set the number of retry attempts and retry interval.
You are advised to set Retry Attempts to 2 and Retry Interval to 5 minutes. If an
upgrade fails, the upgrade will be retried 5 minutes later.

Step 5 Select a software package.

Step 6 Select the device or device group to upgrade and click Create Now.

For details on how to create a group and add devices to the group, see Groups.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Step 7 View the result on the task list. You can click View to view the result for each
device on the Execution Details page.

Step 8 On the Execution Details page, you can stop subtasks that are being processed or
to be processed, and retry failed or stopped subtasks.

----End

2.2.4.4 Exporting Software/Firmware Upgrade Details

You can export details about a software/firmware upgrade task to an XLS file on
IoTDA. For details about restrictions on export tasks, see Exporting Device
Information. The following describes how to export details about a firmware
upgrade task.

Step 1 In the left navigation, choose Devices > Software/Firmware Upgrades, and click
Create Upgrade Task. The upgrade task list page is displayed.

Step 2 Click Export to export the upgrade task details to an Excel file. After the export
task is complete, download the file.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

----End

2.2.5 Device CA Certificates
An X.509 certificate is a digital certificate used for communication entity
authentication. IoTDA allows devices to use their X.509 certificates for
authentication.

The use of X.509 certificate authentication protects devices from being spoofed.
Before registering a device authenticated by an X.509 certificate, upload the device
CA certificate to IoTDA and bind the device certificate to the device during device
registration. This topic describes how to upload a device CA certificate to IoTDA.

Limitations
● Only MQTT devices can use X.509 certificates for identity authentication.
● A maximum of 100 device CA certificates can be uploaded.
● Only Base64-encoded .pem and .crt certificates are supported.

Uploading a Device CA certificate

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > Device CA Certificates, and click
Upload Certificate in the upper right corner.

Step 3 In the displayed dialog box, click Select File to add a file, and then click Yes.

Figure 2-12 Uploading a certificate

NO TE

Device CA certificates are provided by device vendors. You can create a commissioning
certificate during commissioning. For security reasons, you are advised to replace the
commissioning certificate with a commercial certificate during commercial use.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Making a Device CA Commissioning Certificate
This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format and the suffix is .cer.

1. Download and install OpenSSL.
2. Open the CLI as user admin.
3. Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL

installation directory) to access the OpenSSL view.
4. Generate a public/private key pair.

openssl genrsa -out rootCA.key 2048

5. Use the private key in the key pair to generate a CA certificate.
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

The system prompts you to enter the following information. All the
parameters can be customized.
– Country Name (2 letter code) [AU]: country, for example, CN
– State or Province Name (full name) []: state or province, for example, GD
– Locality Name (for example, city) []: city, for example, SZ
– Organization Name (for example, company) []: organization
– Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
– Common Name (e.g. server FQDN or YOUR name) []: common name, for

example, zhangsan
– Email Address []: email address
Obtain the generated CA certificate rootCA.pem from the bin folder in the
OpenSSL installation directory.

Uploading a Verification Certificate
If the uploaded certificate is a commissioning certificate, the certificate status is
Unverified. In this case, upload a verification certificate to verify that you have the
CA certificate.

The verification certificate is created based on the private key of the device CA
certificate. Perform the following operations to create a verification certificate:

Step 1 Generate a key pair for the verification certificate.
openssl genrsa -out verificationCert.key 2048

Step 2 Create a certificate signing request (CSR) for the verification certificate.
openssl req -new -key verificationCert.key -out verificationCert.csr

The system prompts you to enter the following information. Set Common Name
to the verification code and set other parameters as required.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

https://slproweb.com/products/Win32OpenSSL.html

● Country Name (2 letter code) [AU]: country, for example, CN

● State or Province Name (full name) []: state or province, for example, GD

● Locality Name (for example, city) []: city, for example, SZ

● Organization Name (for example, company) []: organization.

● Organizational Unit Name (for example, section) []: organization unit, for
example, IoT

● Common Name (e.g. server FQDN or YOUR name) []: verification code for
verifying the certificate. For details on how to obtain the verification code, see
Step 5.

● Email Address []: email address.

● Password[]: password.

● Optional Company Name[]: company name.

Step 3 Use the CSR to create a verification certificate.
openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
verificationCert.pem -days 500 -sha256

Obtain the generated verification certificate verificationCert.pem from the bin
folder of the OpenSSL installation directory.

Step 4 Select the corresponding certificate, click , and click Upload Verification
Certificate.

Step 5 In the displayed dialog box, click Select File to add a file, and then click Yes.

After the verification certificate is uploaded, the certificate status changes to
Verified, indicating that you have the CA certificate.

----End

Presetting an X.509 Certificate

Before registering an X.509 device, preset the X.509 certificate issued by the CA on
the device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

NO TE

The X.509 certificate is issued by the CA. If no commercial certificate issued by the CA is
available, you can create an X.509 commissioning certificate.

Creating an X.509 Commissioning Certificate

1. Run cmd as user admin to open the CLI and run cd c:\openssl\bin (replace
c:\openssl\bin with the actual OpenSSL installation directory) to access the
OpenSSL view.

2. Generate a public/private key pair.
openssl genrsa -out deviceCert.key 2048

3. Create a CSR.
openssl req -new -key deviceCert.key -out deviceCert.csr

The system prompts you to enter the following information. All the
parameters can be customized.

– Country Name (2 letter code) [AU]: country, for example, CN

– State or Province Name (full name) []: state or province, for example, GD

– Locality Name (for example, city) []: city, for example, SZ

– Organization Name (for example, company) []: organization.

– Organizational Unit Name (for example, section) []: organization unit, for
example, IoT

– Common Name (e.g. server FQDN or YOUR name) []: common name, for
example, zhangsan

– Email Address []: email address.

– Password[]: password.

– Optional Company Name[]: company name.

4. Create a device certificate using CSR.
openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
deviceCert.pem -days 500 -sha256

Obtain the generated device certificate deviceCert.pem from the bin folder in
the OpenSSL installation directory.

2.2.6 MQTT X.509 Certificate Access
IoTDA supports MQTT X.509 certificate access. The following describes how to use
an X.509 certificate to access IoTDA.

Preparations

Step 1 Log in to the IoTDA console.

Step 2 Upload a device CA certificate and verification certificate.

Step 3 Obtain the device certificate for commissioning by referring to Presetting an
X.509 Certificate.

Step 4 Choose Overview in the left navigation pane, view the MQTTS access address and
port, and click Download CA Certificate to save the server certificate file.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

----End

Certificate materials obtained in the preceding steps are as follows:

● deviceCert.key: private key of the device certificate
● deviceCert.pem: device certificate
● mqtts-cert.pem: server CA certificate

Registering an X.509 Certificate for Device Access

Step 1 When creating a product, select MQTT as the protocol.

Step 2 In the left navigation pane, choose Devices > All Devices, and click Register
Device on the right.

Step 3 Enter the device registration information, and set Authentication Type to X.509
certificate. Run the following command to obtain the certificate fingerprint on
the Linux platform:
openssl x509 -fingerprint -sha256 -in client.crt | head -1 | awk '{print substr($2,13)}' | awk
'BEGIN {FS=":"; OFS=""} {for(i=1;i<=NF;++i) {out = out OFS $i}} END {print out;}'

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

NO TE

Fingerprint is optional for registering an X.509 certificate. The system uses the certificate of
the device that is connected to the system for the first time. The device can use only the
certificate of the device that is connected to the system for the first time.

Step 4 Click Yes to complete the device registration. Save the device ID for future use.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

----End

Device Access with Certificate
The following uses MQTT.fx as an example to describe how to connect a device
using the certificate.

Step 1 Start the MQTT.fx client and click the setting icon.

Step 2 Enter the information about the connection profile and the general information.
You can retain the default values for General.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Step 3 Enter the user credential information. Set Client ID and User Name to the device
ID obtained during device registration. You do not need to set Password.

Step 4 Enable SSL/TLS, select the Self signed certificates check box, set Protocol to
TLSv1.2. Configure the certificate materials obtained in Preparations as follows
and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

NO TE

● CA File indicates the device CA certificate.
● Client Certificate File indicates the device certificate.
● Client Key File indicates the private key of the device certificate.

Step 5 Return to the homepage, select the profile you just configured, and click Connect.
If the status icon on the right is green, the device is successfully connected to the
platform.

----End

2.2.7 HarmonyOS Device Management

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

2.2.7.1 Device Connection Based on HarmonyOS Soft Bus

Overview
With the popularization of HarmonyOS devices, more and more users expect
secure communications between devices based on the HarmonyOS technology.
This section describes the management of HarmonyOS security groups and
authorization identifiers for communications between HarmonyOS devices. The
workflow is as follows:

Figure 2-13 Overall process

Constraints
1. Each HarmonyOS soft bus group can contain up to 100 devices.

2. A device can be bound to up to 10 soft bus groups.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane on the left, choose Devices > Groups and click Add Root
Group.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Figure 2-14 Adding a root group

Step 3 Select the created group and create a HarmonyOS soft bus group.

Figure 2-15 Creating a HarmonyOS soft bus

Step 4 After the soft bus is created, view the information indicating that the soft bus is
created.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Figure 2-16 HarmonyOS soft bus information

Step 5 Click Bind, select the device to be bound, and click OK.

Figure 2-17 Binding a device

Step 6 After the binding is complete, view the bound device in the list.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Figure 2-18 Checking bound devices

Step 7 After the device is bound, bring the device online for it to report the device IP
address using the SDK.

NO TE

The device SDK reports the device IP address using the API described in chapter "Device
Reporting Information" in the API Reference. The device_ip parameter is added to the
paras parameter of this API and carries the IP address. For example, the paras parameter is
as follows:
"paras": {
"device_sdk_version": "C_v0.5.0",
"sw_version": "v1.0",
"fw_version": "v1.0",
"device_ip": "127.0.0.1"
}

Step 8 On the console, click Synchronize Message to synchronize the HarmonyOS soft
bus version information to the device.

NO TE

1. The platform delivers the soft bus version number. The device calls the API for obtaining
the latest soft bus information to obtain and update the latest soft bus information.
2. If a device is added to the HarmonyOS group or the device IP address changes, the status
of the HarmonyOS soft bus group is To be synchronized. When all soft bus information is
synchronized to devices, the status is Synchronized.

Step 9 The device SDK calls an API to obtain the latest soft bus information and provides
the obtained information for the HarmonyOS soft bus.

Step 10 When a device receives a downstream command or message that triggers a
connection rule, the SDK calls the HarmonyOS soft bus API to implement device
linkage. (The following figure uses command delivery in device_demo.c as an
example.)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Figure 2-19 Example

----End

2.3 Rules

2.3.1 Overview
You can set rules for devices connected to IoTDA. If the conditions set in a rule are
met, the platform triggers the corresponding action. Device linkage and data
forwarding rules are available.

● Data forwarding
Data forwarding is seamlessly interconnected with other services to
implement full-stack services for device data storage, computing, and
analysis.

● Device linkage
When specific conditions are met, the platform triggers collaborative response
of multiple devices to implement device linkage and intelligent control.

2.3.2 Data Forwarding

Overview
Data forwarding is seamlessly interconnected with other services to implement
full-stack services for device data storage, computing, and analysis.

IoTDA can forward data to the following services/targets:

● Distributed Message Service (DMS) for Kafka: a message queuing service
provided for data transfer. Kafka is distributed messaging middleware that
features high throughput, data persistence, horizontal scalability, and stream
data processing. It adopts the publish-subscribe pattern and is widely used for
log collection, data streaming, online/offline system analytics, and real-time

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

monitoring. You can apply for instances as required and customize partitions
and replicas for topics in the instances. The instances can be used right out of
the box, taking off the deployment and O&M workload for you so that you
can focus on developing your services.

● ROMA Connect: IoTDA can interconnect with ROMA Connect. It is a Message
Queue Service (MQS) component that provides secure and standard message
channels between IoTDA and applications. MQS is enterprise-level messaging
middleware that uses Kafka and a unified message access mechanism. It
provides basic and advanced functions to offer a unified message channel for
enterprise data management. The basic functions include message publishing
and subscription, topic management, user permissions management, resource
statistics, monitoring, and alarm reporting. The advanced functions include
message tracking, network isolation, and integration of cloud and on-
premises applications.

● Third-party message queue (Kafka): Kafka server provided by a third party for
data transfer. Kafka is distributed messaging middleware that features high
throughput, data persistence, horizontal scalability, and stream data
processing. It adopts the publish-subscribe pattern and is widely used for log
collection, data streaming, online/offline system analytics, and real-time
monitoring.

● Third-party application (HTTP push): You can call IoTDA APIs for creating a
rule triggering condition, creating a rule action, and modifying a rule
triggering condition or use the IoTDA console to configure and activate rules.
After you specify an application URL, IoTDA pushes the changes to the
specified URL server based on the type of data subscribed.

● MRS Kafka: IoTDA forwards device data to MRS Kafka for big data analytics
and storage, facilitating flexible and diversified data use.

● OBS: IoTDA forwards device data to OBS for persistent storage. Currently, only
JSON and CSV files are supported.

● InfluxDB: Device data is forwarded to the InfluxDB time series database
through the IoTDA service for persistent storage. Enable SSL for the InfluxDB
database.

● Vastbase G100: Device data can be forwarded to Vastbase G100 through
IoTDA for persistent storage.

● Apache IoTDB: Data of devices is forwarded to Apache IoTDB for persistent
storage.

For details, see Subscription/Push.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set forwarding data.

Set parameters based on Table 2-6 and click Create Rule. In the displayed dialog
box, click Continue.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Figure 2-20 Setting forwarding data

Table 2-6 Setting forwarding data

Parameter Description

Rule Name Specify the name of a rule to create.

Description Describe the rule.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Parameter Description

Data Source ● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use custom topics on the product
details page.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. When Data Source is set to Device message
status, quick configuration is not supported.

● Device status: The status change of a directly connected
device in a resource space will be forwarded. Click Quick
Configuration on the right to forward information about
devices whose status is Online, Offline, or Abnormal to
other services.

● Device event: Only events you defined in the product will be
forwarded. When Data Source is set to Event, quick
configuration is not supported.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch task, quick configuration is not
supported.

● Product: Product information, such as product addition,
deletion, and update, will be forwarded. When Data Source
is set to Product, quick configuration is not supported.

● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device alarm: Device alarm information, such as device
alarm generation and clearance, will be forwarded. When
Data Source is set to Device alarm, quick configuration is
not supported.

● Asynchronous command status of the device: The
command status change of the device will be forwarded.
When Data Source is set to Asynchronous command status
of the device, quick configuration is not supported.

● Device log: Logs reported by devices will be reported. Quick
configuration is not supported for this option.

Trigger After the data source is selected, the platform automatically
matches the trigger event.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Parameter Description

Edit SQL You can edit the SQL statements for processing message data
and set the data filtering statements.
Click Edit SQL to edit the SQL statements for processing
message fields.
For details, see SQL Statements.

Step 4 Set the forwarding target.

Click Add, select a forwarding target by referring to Table 2-7, and click OK.

Figure 2-21 Add a forwarding target

Table 2-7 Setting the forwarding target

Parameter Description

Distributed Message Service
(DMS) for Kafka
NOTE

Data can be forwarded only to
Kafka premium instances.

● Connection Address:Specify the Kafka
connection address.

● Topic: Specify the topic of the forwarding
target.

● Data Transmission Encryption: If data
transmission encryption is enabled, enter the
SASL username and password that you
entered when applying for a Kafka instance.

AMQP message queue Message Queue: Select the queue to which
messages are to be pushed. If no queue is
available, create one.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Parameter Description

ROMA Connect ROMA Connect is focused on application and
data integration. It integrates messages, data,
APIs, and devices to help enterprises rapidly
streamline legacy systems and cloud native
applications.
● Connection Address: Enter the connection

address of MQS. On the Instance Information
page of the ROMA Connect console, click the
Basic Information tab to view the MQS public
address in the connection address.

● Username/Password: Enter the MQS
username and password for logging in to the
ROMA console. On the Integration
Applications page of the ROMA Connect
console, click the name of the integration
application to which the topic belongs. In the
Basic Information area of the Overview tab
page, you can view the values of Key and
Secret, that is, the username and password.

● Topic: Specify the topic of the forwarding
target. On the ROMA Connect console, choose
Message Queue Service > Topic
Management and view the topic name.

Third-party message queue
(Kafka)

● Connection Address: Specify the connection
address list of the Kafka server.

● Topic: Specify the topic of the forwarding
target.

● User Authentication Type: The default type is
PAAS, in which the Kafka server does not
authenticate users. The Kafka server also
supports PLAIN and SCRAM SASL
authentication. Both modes are based on
username and password. SCRAM is more
secure than PLAIN and includes the SCRAM-
SHA-256 and SCRAM-SHA-512 algorithms.

● Username/Password: The SASL
authentication is used. You need to enter the
corresponding username and password.

Third-party application
(HTTP push)

IoTDA can push specified device data to a third-
party application based on the rule configured.
You can set different addresses that different
types of device data will be pushed to.
For example, if the push URL is https://
10.10.10.10:8443/example/.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Parameter Description

MRS Kafka MRS Kafka streaming clusters feature efficient
stream data ingestion and real-time data
processing and storage, meeting requirements of
different big data application scenarios. They
convert data into data models that meet service
requirements based on the structure and logic.
● Kerberos Authentication: Kerberos is a

network authentication protocol used to
authenticate client/server applications using
the key encryption technology. To enable
Kerberos authentication, configure the krbFile
and keytabFile credential files.

● Connection Address: Enter the connection
address of MRS.

● Topic: Customize a topic.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Parameter Description

Object Storage Service
(OBS)
NOTE

Currently, data can be
forwarded only to OBS.

OBS is a stable, secure, cloud storage service that
is scalable, efficient and easy-to-use. It allows you
to store any amount of unstructured data in any
format, and provides RESTful APIs so you can
access your data from anywhere.
● Bucket Name: Enter the name of the bucket

created in OBS. If no OBS bucket is available,
create one on the OBS console.

● Access Key ID (AK) and Secret Access Key
(SK) together make an access key. You can
use an access key to sign requests of Cloud
service APIs. AK is used together with SK to
sign requests cryptographically, ensuring that
the requests are secret, complete, and correct.
For security purpose, SK is not displayed when
you view action details.

● Endpoint: OBS provides an endpoint for each
region. An endpoint can be considered as the
domain address of OBS in a region, and is
used to process access requests from the
region. For example, {region} or 12.12.12.12.

● Custom Directory: used to store files that will
be dumped to OBS. Separate different
directory levels are by slashes (/). The
directory cannot start or end with a slash (/)
or contain two or more consecutive slashes
(/).

● File Name: indicates the target file for data
forwarding. If the file name is not specified, a
Normal object is generated in OBS. If the file
name is specified, an appendable object is
generated in OBS. The normal object name
cannot be used as the file name.

● File Type: JSON and CSV are available. If you
select CSV, select or enter existing fields in the
JSON file and set target fields for storage.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Parameter Description

NOTE
1. The content size of each field in the CSV file

cannot be greater than 32 KB. If greater, only the
first 32 KB is used.

2. The content of the exported CSV file is UTF-8
encoded.

3. File name not specified: If the trigger source is
not related to devices, the generated OBS file is
named as follows: Timestamp + Four-digit
random number. If the trigger source is related
to devices, the OBS file is named as follows:
Device ID + Timestamp + Four-digit random
number. In a project, you cannot set the same
file in the same OBS bucket as the forwarding
destination for multiple rules.

4. If the endpoint is set to a domain name, DNS
resolution may fail. Contact technical support
engineers.

Time series database
InfluxDB

● Database Instance Address: Enter the address
of the InfluxDB database.

● Database Name: indicates the target
database in InfluxDB. If the target database
does not exist, it is automatically created and
kept for 90 days by default.

● Access Account: Enter the account with access
permissions.

● Access Password: Enter the password of the
account.

● Save to: Enter the target table where data is
to be stored. If the table does not exist, it will
be automatically created.

● Forwarding Field: Enter the data field to be
forwarded.

● Target Field: Enter the target field in the
database table.

NOTE
1. If multiple actions of forwarding data to InfluxDB

use the same database and table and set the same
target fields for forwarding different types of data,
the forwarding fails.

2. Do not set the Target Field to time, which may
conflict with the default field of InfluxDB.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Parameter Description

Vastbase G100 Vastbase G100 is an enterprise-level relational
database developed by Vastdata based on the
openGauss kernel.
● Database Instance Address: Enter the address

of Vastbase G100.
● Database Name: indicates the target

database in Vastbase G100.
● Access Account: Enter the account with access

permissions.
● Access Password: Enter the password of the

account.
● SSL: SSL is enabled by default.
● Encryption Certificate: Select the certificate

uploaded to the platform when SSL is enabled.
● Save to: Enter the target table where data is

to be stored. Use lowercase letters to name
tables created on the database server. By
default, the table name returned on the
console is in uppercase letters.

● Forwarding Field: Enter the data field to be
forwarded.

● Target Field: Enter the target field in the
database table.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Parameter Description

Time series database
(Apache IoTDB)

Apache IoTDB is a low-cost and high-
performance IoT-native time series database.
● Database URL: address of the IoTDB database.

REST must be enabled for IoTDB
(enable_rest_service=true).

● Access account: account with required
permissions, which must have the
READ_DATA, WRITE_DATA, READ_SCHEMA,
and WRITE_SCHEMA permissions on the
corresponding path.

● Access password: Enter the password of the
account.

● Dump to path: IoTDB data storage path. Set
the expiration time of the IoTDB database
path to prevent the disk from being used up.

● SSL: SSL is enabled by default.
● Certificate file: If SSL is enabled, select the

certificate that has been uploaded to the
platform.

● Target dump field: target field in the database.
NOTE

1. If the same path is set for multiple IoTDB
forwarding actions and the target storage fields are
the same, the target storage field value may be null
if the data types of the forwarding fields of these
forwarding actions are different.

2. The target storage field cannot be set to time,
which will conflict with the default field Time of
IoTDB.

Step 5 Enable a rule.

After the rule is configured, click Enable Rule to start data forwarding.

----End

2.3.3 SQL Statements
When creating a data forwarding rule, you must compile SQL statements to parse
and process JSON data reported by devices. Data in binary format is transparently
transmitted without being parsed. This topic describes how to compile SQL
statements used in data forwarding rules.

SQL Statements
An SQL statement consists of the SELECT and WHERE clauses. Each clause can
contain a maximum of 500 characters. Chinese and other characters are not
supported. Contents in the SELECT and WHERE clauses are case-sensitive.
However, keywords such as SELECT, WHERE, and AS are case-insensitive.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

The following provides an example of SQL statements used in a data forwarding
rule.

The source data is as follows:

{
 "resource" : "device.message",
 "event" : "report",
 "event_time" : "20151212T121212Z",
 "notify_data" : {
 "header" : {
 "device_id" : "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "product_id" : "ABC123456789",
 "app_id" : "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "gateway_id" : "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "node_id" : "ABC123456789",
 "tags" : [{
 "tag_value" : "testTagValue",
 "tag_key" : "testTagName"
 }]
 },
 "body" : {
 "topic" : "topic",
 "content" : {
 "temperature" : 40,
 "humidity" : 24
 }
 }
 }
}

To trigger the rule when the temperature is greater than 38°C and filter out the
device name, temperature, and humidity, use the following SQL statement:

SELECT notify_data.body.content.temperature AS t, notify_data.body.content.humidity AS humidity,
notify_data.header.device_id AS device_id
WHERE notify_data.body.content.temperature > 38

The format of the forwarded data is as follows:

{
 "t": 40,
 "device_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "humidity": 24
}

SELECT Clause
The SELECT clause consists of SELECT followed by multiple SELECT subexpressions,
which can be *, JSON variables, string constants, or integer constants. A JSON
variable is followed by an AS keyword and an AS variable, 32 characters in total. If
a constant is used, you must use AS to specify the name.

● JSON variable
A JSON variable can contain letters, numbers, underscores (_), and hyphens
(-). To distinguish a hyphen (-) from the minus sign, use double quotation
marks to enclose the JSON variable with a hyphen, for example, $."msg-
type".
$. can be omitted to make the statement more concise.
The JSON variable extracts data of the nested structure.
{
 "a":"b",
 "c": {

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 "d" : "e"
 }
}

$.c.d can be used to extract character string e, which can be nested at
multiple layers.

● AS variable
An AS variable consists of letters and is case sensitive. The variable [a-zA-
Z_-]* is supported. If a hyphen (-) is used, enclose it with double quotation
marks ("").

WHERE Clause
In the WHERE clause, you can perform Boolean operations using JSON variables,
make some non-null judgments, and combine the results using AND or OR.

● IS NULL and IS NOT NULL
Null judgment can be used in the WHERE clause. If the JSON variable cannot
extract data or the extracted array is empty, IS NULL is true. Otherwise, IS
NOT NULL is true.
WHERE $.data IS NULL

● Operators > <
The greater than (>) or less than (<) operator can be used in the WHERE
clause. The operator can be used between two JSON variables, between a
JSON variable and a constant, or between a constant and a constant only
when the value of a JSON variable is a constant integer.

● Equals sign (=)
The equals sign (=) can be used in the WHERE clause for comparison between
JSON variables, between JSON variable integers and integer constants, and
between JSON variable strings and string constants. If IS NULL for the two
JSON variables is true, the comparison result of the equals sign (=) is false.

● IN/NOT IN
IN and NOT IN operators are used in WHERE clauses. If the target is in the
specified value set, IN is valid. Otherwise, NOT IN is valid. IN and NOT IN
operators support only strings and digits. An IN or NOT IN set supports only
constants. The element types in the set must be the same as those of the
target values.
Example:
notify_data.header.product_id IN ('product_id1', 'product_id2')

Function List
Multiple functions are used in rules. You can use these functions when compiling
SQL statements to implement diversified data processing. Function names must be
capitalized.

SELECT GET_TAG('tagA') AS tag FROM DEVICE_PROPERTY_REPORT

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Function
Name

Parameter Purpose Return
Value
Type

Restrictions

GET_TAG String
tagKey

Obtain the value of a
tag.

String -

CONTAINS_TA
G

String
tagKey

Determine whether a
tag is contained.

Boolea
n

-

GET_SERVICE String
serviceId

Obtain the service
with a specific
serviceId. If you have
multiple services with
the same serviceId in
a message body, the
result may be
unreliable.

JSON
structu
re

Used only for
property
reporting

GET_SERVICES String
serviceId

Obtain the service
with a specific
serviceId. If you have
multiple services with
the same serviceId in
a message body, the
result may be
unreliable.

JSON
array

Used only for
property
reporting

CONTAINS_SE
RVICES

String
serviceId

Obtain the service
with a specific
serviceId and
combine the results
into an array.

Boolea
n

Used only for
property
reporting

GET_SERVICE_
PROPERTIES

String
serviceId

Obtain the properties
field in the service
with a specific
serviceId.

JSON
structu
re

Used only for
property
reporting

GET_SERVICE_
PROPERTY

String
serviceId,
String
propertyKey

Obtain the value of
propertyKey in
properties of a
service with a specific
serviceId.

String Used only for
property
reporting

STARTS_WITH String input,
String prefix

Check whether the
input value starts
with prefix.
Example:
STARTS_WITH('abcd','abc')
STARTS_WITH(notify_data.h
eader.device_id,'abc')
STARTS_WITH(notify_data.h
eader.device_id,notify_data.h
eader.product_id)

Boolea
n

-

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Function
Name

Parameter Purpose Return
Value
Type

Restrictions

ENDS_WITH String input,
String suffix

Check whether the
input value ends with
suffix.
Example:
ENDS_WITH('abcd','bcd')
ENDS_WITH(notify_data.hea
der.device_id,'abc')
ENDS_WITH(notify_data.hea
der.device_id,notify_data.hea
der.node_id)

Boolea
n

-

CONCAT String
input1,
String
input2

Concatenate the
input1 and input2
strings.
Example:
CONCAT('ab','cd')
CONCAT(notify_data.header.
device_id,'abc')
CONCAT(notify_data.header.
product_id,notify_data.heade
r.node_id)

String -

REPLACE String input,
String
target,
String
replacement

Replace target (part
of the string) in the
input value with
replacement.
Example:
REPLACE(notify_data.header.
node_id,'nodeId','IMEI')

String -

SUBSTRING String input,
int
beginIndex,
int
endIndex(re
quired=false
)

Obtain the substring
that is returned and
ranges from
beginIndex
(included) to
endIndex (excluded)
of the input value.
Note: endIndex is
optional.
SUBSTRING(notify_data.hea
der.device_id,3)
SUBSTRING(notify_data.hea
der.device_id,3,12)

String -

NOW - Obtain the timestamp
of the current system.
The unit is ms.

Integer -

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Function
Name

Parameter Purpose Return
Value
Type

Restrictions

GET_SERVICES
_BY_TIME_QUE
RY

long
startTime,
long
endTime

Obtain services that
meet the conditions
of startTime <
event_time <
endTime from
services and return a
service list. startTime
and endTime are
timestamps.
GET_SERVICES_BY_TIME_QU
ERY(0, 1000000)

JSON
array

Used only for
property
reporting

LENGTH String
jsonPath/
Functions

Calculate the length
of the array obtained
by jsonPath or
functions.
LENGTH(GET_SERVICES_BY_
TIME_QUERY(0, 1000000))
LENGTH(notify_data.body.se
rvices)

Integer The result of
the input
parameter
must be an
array.

FILTER_SERVIC
ES_BY_TIME_Q
UERY

long
startTime,
long
endTime

Filter services that
meet the conditions
of startTime <
event_time <
endTime and return
the JSON body
containing the filtered
service list. startTime
and endTime are
timestamps.
FILTER_SERVICES_BY_TIME_
QUERY(0, 1000000)

JSON
structu
re

-

GET_CHILDRE
N

String
jsonPath/
Functions

Obtain the JSON
structure body from
the jsonPath or the
function.
GET_CHILDREN(notify_data.
body)
GET_CHILDREN(FILTER_SERV
ICES_BY_TIME_QUERY(0,
1000000))

JSON
structu
re

1. The result
of the
input
parameter
must be in
the format
of JSON
structure
body.

2. This
function
cannot be
used with
AS.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

2.3.4 Connectivity Tests

Overview
IoTDA provides connectivity tests on the forwarding targets. In the service
debugging phase, you can simulate service data to test the availability of rule
actions and the consistency of forwarded data. If a fault occurs in data forwarding
during service running, you can perform connectivity tests to reproduce and locate
the fault.

Procedure

Step 1 After creating a forwarding rule, click Test in row of the forwarding target to be
debugged.

Step 2 In the Connectivity Test dialog box, enter the test data for forwarding in Test
Data, or click Analog Input Template in the upper right corner to use the
template data, and then click Connectivity Test.

----End

2.3.5 Server Certificates
IoTDA supports interactions with third-party applications. To ensure transmission
security between the platform and applications during access, SSL certificate
verification is required. You can centrally manage SSL certificates on the Server
Certificate page to use the same SSL certificate in the same service scenario.

Uploading an SSL Certificate
This section describes how to upload a certificate using HTTPS.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Server Certificate. Click Upload
Certificate in the upper right corner, configure parameters based on the following
table, and click OK.

Parameter Description

Certificate
Name

It is used to distinguish different certificates and can be
customized.

CA
Certificate

A CA certificate from the application can be applied for in advance.
NOTE

You can create a commissioning certificate during commissioning. For
security reasons, you are advised to replace the commissioning certificate
with a commercial certificate during commercial use.

Step 3 In the navigation pane, choose Rules > Server Certificate and locate the target
certificate to obtain the certificate ID, which is used as a parameter in the API for
creating a rule action.

----End

Managing SSL Certificates
After the certificate is uploaded, you can view and manage the certificate in the
server certificate list.

● Updating a certificate: In the certificate list, locate the target certificate and
click Update to upload a new certificate.

● Deleting a certificate: Locate the certificate to be deleted and click Delete. In
the displayed dialog box, select Agree to delete, and click OK to delete the
certificate. After the certificate is deleted, authentication functions based the
certificate will be affected. For example, the message push through HTTPS
will be affected.

2.3.6 Device Linkage
When specific conditions are met, the platform triggers collaborative response of
multiple devices to implement device linkage and intelligent control.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

2.3.6.1 Cloud Rules

Overview
If you set a cloud rule, IoTDA determines whether the rule triggering condition is
met. If the condition is met, IoTDA performs actions you set, such as alarm
reporting, topic notification, and command delivery.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Device Linkage, and click Create Rule in
the upper right corner.

Step 3 Create a device linkage rule based on the table below.

Paramet
er

Description

Rule
Name

Name of a rule to be created.

Activate
upon
creation

You can set whether to activate the rule upon creation.

Rule
Type

Set the Rule Type to Cloud.

Effective
Period

● Always effective: There is no time limit. The platform always
checks whether the conditions are met.

● Specific time: You can select a time segment during which the
platform checks whether the conditions are met.

Descripti
on

Description of the rule.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Paramet
er

Description

Conditio
n

You can set whether all conditions or any of the conditions need to
meet.
● Triggered upon matching device: Set conditions for devices that

use the same product model.
– Select product: Select a specific product.
– Select service: Select a service type.
– Select property: Select a property in the data reported.

NOTE

▪ If the data type of a property is int, long, or decimal, you can select
multiple operators.

▪ When the data type of a property is string, date time, jsonObject,
boolean, enum, or string list, you can only select the equal sign
(=) as the operator.

– Property comparison value: Enter values and an expression.
The expression supports only asset properties. If an asset
property is selected, the device property value in the reported
data is compared with the selected asset property value to
determine whether the condition is met. Configure asset
properties of devices by referring to Asset Properties.

– Data Validity Period (s): Specify the data validity period. For
example, if Data Validity Period is set to 30 minutes, a device
generates data at 19:00, and the platform receives the data at
20:00, the action is not triggered even if the conditions are
met.

● Triggered upon specified device: Set conditions for a specified
device. Select the device, service, and property as the conditions.
For details, see the parameters described under Triggered upon
matching device.

● Optional: Triggered periodically: Set the time at which the rule
is triggered. It is usually used for periodic triggering conditions,
such as turning off street lights at 07:00 every day.
NOTE

If Timer is selected, Send notifications, Report alarms, and Clear alarms
cannot be selected for Actions.

– By period: Select a week or a time point.
– By policy:

▪ Specify a start time for triggering the rule.

▪ Repeat: Enter the number of times that the rule can be
repeatedly triggered. The value ranges from 1 to 9999.

▪ Interval: interval for triggering the rule after the start time.
The value ranges from 1 to 525600, in units of minutes.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Paramet
er

Description

Set
Actions

Click Add Action to set the action to execute after the rule is
triggered.
● Deliver commands: Select the device, service, and command to

be delivered in sequence, and set the command delivery
parameters.

● Send notifications: Select the region where the SMN service is
located. If the platform has not been granted with the
permissions to access SMN, perform the authorization as
prompted. Click the corresponding link to go to the SMN console
and set the topic.

● Report alarms: Define the alarm severity, name, and content.
● Clear alarms: Define the alarm severity and name. If the

conditions are met, the alarm reported by the device to the
platform is cleared.

Step 4 Click Create Rule in the lower right corner. Newly created rules are in the
activated state by default. You can disable a rule in the Status column of the rule
list.

----End

2.3.6.2 Device-side Rules

Overview
Cloud rules are parsed and executed on the cloud. IoTDA determines whether
triggering conditions are met and triggers corresponding device linkage actions.
Device-side rules are device linkage rules delivered to devices, where the device-
side rule engine parses and executes the rules. Device-side rules can still run on
devices when the network is interrupted or devices cannot communicate with the
platform. Device-side rules can extend application scenarios and improve device
running stability and execution efficiency. For example, when the indoor light
intensity is lower than 20 lx, lights can be automatically turned on. This
implements intelligent control independent of network devices.

Typical scenarios

There are a large number of surveillance devices in highway tunnels. The network
environment is complex and the network quality is unstable. However, emergency
handling has high requirements on real-time network performance. Linkage
between emergency devices cannot completely depend on cloud rules. Device-side
rules are required to implement emergency plan linkage. Device linkage plans can
be formulated in advance based on different situations such as fires and traffic
accidents. Monitoring personnel can start device linkage plans with one click
based on tunnel conditions. Device-side rules enable simultaneous status changes
of different types of devices. This reduces dependency on network quality and
improves overall device linkage efficiency. For example, if the temperature of a
flue pipe is too high, the controller can be linked to open the drainage valve to

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

reduce the temperature. If the concentration of carbon monoxide (CO) is too high,
a COVI device can be linked to control fans for ventilation.

Prerequisites

1. Device-side rules support only command delivery actions.

2. Devices must be integrated with IoT Device SDK (C) v1.1.2 or later.

3. Devices need to report the SDK version number to IoTDA using the APIs
provided by the SDK.

Figure 2-22 Device-side rule architecture

Example
The following uses a smart street light system as an example to describe how to
use device-side rules.

Step 1 Log in to the IoTDA console.

Step 2 Create a product and model.

1. To create a product, choose Products > Create Product, enter the product
name and choose the device type, and click OK.

Figure 2-23 Creating a product

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

2. A model is created. Find SmartLight in the product list and click View.

Figure 2-24 Viewing product information

3. On the product details page, click Customize Model and add two services:
BasicData and LightControl, as shown in the following figures.

Figure 2-25 Customizing model: service BasicData

Figure 2-26 Customizing model: service LightControl

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Step 3 In the navigation pane, choose Devices > All Devices and click Individual
Register in the upper right corner. Select the resource space you select in Step 2
and a product, enter a node ID, and click OK.

Figure 2-27 Creating a device

Step 4 After the device is created, copy and save the device secret for later use.

Figure 2-28 Device registered

Step 5 Create a rule.

1. In the navigation pane, choose Rules > Device Linkage. In the upper part of
the page, select the resource space of the product to which the device
belongs. Click Create Rule in the upper right corner.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Figure 2-29 Creating a rule

2. On the page for creating a rule, enter a rule name, select Device Side for
Rule Type, and select a device for Execution Device. The rule will be
delivered to the device you select for parsing and execution.

Figure 2-30 Selecting Device Side

3. Select smartlight001 and click OK.

Figure 2-31 Selecting a rule execution device

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

NO TE

Device-side rules can be created only for devices with the IoT Device SDK. Currently,
only IoT Device SDK (C) v1.1.2 is supported. IoTDA obtains on-device SDK version from
information reported by southbound devices through the related API (Refer to the API
reference).

4. Click Add Trigger. The current device is used by default, and other devices are
not available. Click Add Action and select the current device or other devices.

Figure 2-32 Adding a trigger and action

5. In Set Triggers, set the property trigger to luminance<= 27. In Set Actions,
configure the control_light command and configure the parameter to set
light_state to on.

Figure 2-33 Setting a trigger condition and action

Step 6 Create a device linkage rule based on the table below.

Table 2-8 Parameter description

Parameter Description

Rule Name Name of a rule to be created.

Activate
upon
creation

Selected: The rule is activated upon creation.
Deselected: The rule is not activated after creation.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Parameter Description

Effective
Period

● Always effective: There is no time limit. IoTDA always checks
whether conditions are met.

● Specific time: You can select a time segment during which the
platform checks whether the conditions are met.
NOTE

Device-side rules are stored in the memory. When a device is powered
off, rules stored on the device are cleared. When the device is restarted
or powered on, the device updates all historical rules from IoTDA.

Description Description of the rule.

Set Triggers You can set whether all conditions or any of the conditions need
to meet.
NOTE

If all conditions need to meet, Triggered upon specified device and
Triggered periodically modes cannot be used at the same time. You can
specify different devices to set multiple triggers based on the devices.

Trigger type: Currently, only Device Property, Device Status, and
Timer are supported.
● Triggered upon specified device: The rule will be triggered

when the specified device reports properties.
– Select service: Select the corresponding service type.
– Select property: Select a property in the data reported.
NOTE

– If the data type of a property is int or decimal, you can select
multiple operators.

– If the data type of a property is string, you can only select the equal
sign (=) as the operator.

● Triggered periodically: You can customize the trigger.
– Specify a start time for triggering the rule.
– Repeat: number of times that the rule can be triggered. The

value ranges from 1 to 1440.
– Interval: interval for triggering the rule after the start time.

The value ranges from 1 to 1440, in units of minutes.

Set Actions Click Add Action to set the action to execute after the rule is
triggered.
Deliver commands: Select the device, service, and command to
be delivered in sequence, and set the command delivery
parameters.

Step 7 Click Create Rule in the lower right corner. Newly created rules are in the
activated state by default. You can disable a rule in the Status column of the rule
list.

Step 8 Compile the device-side code. In SDKs that support device-side rules (only IoT
Device SDK C is supported currently), you only need to implement the callback
functions for property reporting and command processing. Click here to obtain the

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md

IoT Device SDK (C) and perform the following operations after the operations in
Preparations are complete.

1. Open the src/device_demo/device_demo.c file and find the
HandleCommandRequest function.

Figure 2-34 Command processing

The following commands are use for demonstration only.
 printf("----- execute command----- \n");
 printf("service_id: %s\n", command->service_id);
 printf("command_name: %s\n", command->command_name);
 printf("paras: %s\n", command->paras);

2. Open the src/device_demo/device_demo.c file and find the
TestPropertiesReport function.

Figure 2-35 Replacing the code

Use the following code:
const int serviceNum = 1; // reported services' total count
ST_IOTA_SERVICE_DATA_INFO services[serviceNum];

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md#3

#define MAX_BUFFER_LEN 70
char propsBuffer[MAX_BUFFER_LEN];
// This is an example of obtaining a temperature value. Obtain the actual value from a sensor.
if(sprintf_s(propsBuffer, sizeof(propsBuffer), "{\"luminance\": %d}", 20) == -1){
printf("can't create string of properties\n");
return;
}

services[0].event_time = GetEventTimesStamp(); // if event_time is set to NULL, the time will be the
iot-platform's time.
services[0].service_id = "BasicData";
services[0].properties = propsBuffer;

int messageId = IOTA_PropertiesReport(services, serviceNum, 0, NULL);
if (messageId != 0) {
printf("report properties failed, messageId %d\n", messageId);
}
free(services[0].event_time);

3. Compile and run the SDK. You can see the corresponding command from the
output.
----- execute command-----
service_id: BasicData
command_name: control_light
paras: {
 "light_state": "on"
}

The preceding log is only an example. You need to implement the specific
command processing code in 1.
If a command is executed across devices, the callback function
IOTA_SetDeviceRuleSendMsgCallback needs to be called. You need to
implement message sending using the preconfigured function
HandleDeviceRuleSendMsg. After the command execution device receives
the message, it parses and executes the command.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

Figure 2-36 Parsing and executing commands

----End

2.3.7 Data Forwarding Flow Control Policy

Overview

Data forwarding flow control allows you to configure flow control policies based
on your service scenarios and forwarding target performance to protect your
backend services.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Policy Config
in the upper right corner.

Step 3 On the flow control policy page, click Create Policy, set parameters by referring to
the following table, and click OK.

Table 2-9 Flow control policy parameters

Parameter Description

Policy Name Name of the flow control policy.

Description Function and purpose of creating the flow control policy.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Parameter Description

Flow control
size

Maximum TPS for data forwarding.

Policy Type There are three types of flow control policies: Forwarding
channel, Forwarding rule, and Forwarding action.
● Forwarding channel indicates that the flow control policy is

applied to a specified forwarding channel. Types of channels
include:
– Distributed Message Service (DMS) for Kafka
– AMQP message queue
– ROMA Connect
– Third-party message queue (Kafka)
– Third-party application (HTTP push)
– MRS Kafka
– OBS
– InfluxDB
– Vastbase G100
– Apache IoTDB

● Forwarding rule indicates that the flow control policy is
applied to a specified forwarding rule.

● Forwarding action indicates that the flow control policy is
applied to a specified forwarding action.

Step 4 On the policy configuration page, you can view, modify, and delete created flow
control policies. You can only modify the name, description, and flow control value
of a policy.

----End

2.4 Monitoring and O&M

2.4.1 Reports
IoTDA provides a variety of reports to intuitively display data. You can view
statistics of different resource spaces. The statistics include device statuses, device
messages, total number of API calls, number of different response codes, number
of forwarded messages, and data forwarding traffic.

In the left navigation pane, choose O&M > Reports. On the Reports page that is
displayed, you can view the statistics details. Table 2-10 describes the report
names and functions.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Figure 2-37 Device monitoring statistics

Figure 2-38 API calls

NO TE

The rules for viewing API call statistics are as follows:
● If the login account has the admin permission, you can view all statistics of the tenant.

Otherwise, you can view only the statistics of the specific account.

Figure 2-39 Data forwarding statistics

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Table 2-10 Statistical report description

Report
Name

Description Statistical
Period

Device
Overvie
w

The numbers of all devices, online devices, offline devices,
frozen devices, and inactive devices, which indicate the
numbers and statuses of devices in real time.

1 minute

Device
Statuse
s

The numbers of online devices, offline devices, frozen
devices, and inactive devices in the target resource space
at a certain time of the day.

1 minute

Device
Messag
es

The number of device messages of a specified resource
space or all resource spaces of a tenant. The statistics are
displayed by hour. The seven types of device messages
are as follows:
Message delivery, asynchronous command delivery,
command delivery, event delivery, property reporting,
event reporting, and message reporting

1 minute

API
Calls

The total number of API calls and the number of 2xx,
4xx, and 5xx response codes in the specified resource
space are collected every 5 minutes. The response codes
are described as follows:
Status code 2xx indicates that the server has successfully
processed the request from the client.
Status code 4xx indicates that the client request is
incorrect. For example, the client requested a non-
existent page or the client provided invalid authentication
information.
Status code 5xx indicates that the server failed to process
the request due to an error. For example, request
processing on the server timed out.
You can query API call statistics in the last 4 hours, last
day, last 3 days, or last week.

5 minutes

Messag
es

IoTDA collects the total number of messages of the
corresponding target and trigger in the current resource
space every hour.
You can select a resource space, target, and trigger
monitored to view detailed message statistics. The
statistics can be filtered by status (push success, timeout,
unknown error) and total number.

1 minute

Forwar
ding
Traffic

IoTDA collects the traffic (in bytes) of successful data
forwarding of the corresponding target and trigger in the
current resource space every hour.

1 hour

2.4.2 Device Alarms
IoTDA provides the device alarm management functions, including reporting
alarm by devices, reporting and clearing alarms by setting device linkage rules,

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

viewing device alarms, collecting statistics on device alarms, and manually
clearing device alarms. You can filter the alarms to be viewed by setting the filter
criteria, such as the device ID, product name, and alarm severity, and alarm status.
Pay close attention to the device alarms and handle them in a timely manner to
ensure the normal device running.

Configuring a device linkage rule to report alarms

You can set a device linkage rule, set the response action to alarm reporting, and
define the alarm attributes and alarm severity on IoTDA. When the trigger
conditions are met, IoTDA reports an alarm. For example, when the battery level
of a smart water meter is lower than 10%, IoTDA generates an alarm for low
battery level. Maintenance personnel can locate the water meter based on the
alarm information and replace the battery.

Viewing alarm information

You can view alarm information in a specified period.

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose O&M > Alarms. On the page that is displayed,
view the alarm information about IoTDA.

Step 3 Locate the target alarm in the list and click its name to check its details.

Step 4 Clear the alarm. After a device fault is rectified, you can click the clear button in
the Operation column of the target alarm in the alarm list to manually clear the
alarm.

----End

2.4.3 Message Trace

Scenario
If a fault occurs in core service scenarios (device authentication, device alarm
reporting, device status change, command delivery, data reporting, or data
forwarding), IoTDA can use the message trace function to quickly locate the fault
and analyze the cause. Currently, message tracing is not applicable to other
scenarios. IoTDA supports message trace for NB-IoT and MQTT devices. You can
trace messages for up to 50 devices simultaneously. The maximum number of
message trace records that can be displayed and the maximum number of records
can be exported for a single device depend on the queue capacity. The maximum
queue capacity is 500 or 2,000 records.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices.

Step 3 Search for the device to trace and click View to access its details.

Step 4 On the Device Details page, click the Message Trace tab, and click Start Trace to
set the message tracing duration. The message tracing duration indicates the
duration from the time when message tracing starts to the time when message

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

tracing ends. Messages are traced in this duration. After the tracing configuration
is modified, the new time is used. You can expand the Advanced Settings to set
the trace queue capacity (the maximum number of records can be saved for this
message trace task).

Figure 2-40 Starting message tracing

Step 5 View the services that are being traced on the Message Trace tab page of the
Device Details page. You can also click Stop Trace to stop the task. If there are
many records in the trace result, you can filter them by message status, message
type, record time, keyword of service details, and flow ID. The relationship
between multiple keywords of service details is logical AND. You can click Export
Data to export the trace result for further analysis. If the message status is Failed,
you can click View to view the result details and locate the fault based on the
failure handling suggestions.

NO TE

To enable message tracing for child devices, you need to enable message tracing for the
corresponding gateway. Otherwise, some message tracing data will be lost.
The maximum number of message trace records that can be displayed and the maximum
number of records can be exported for a single device depend on the queue capacity. The
maximum queue capacity is 500 or 2,000 records.

Figure 2-41 Viewing message trace results

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

2.4.4 Online Debugging

Overview
After the product models and codecs are developed, the application can receive
data reported by the device and deliver commands to the device through IoTDA.

The IoTDA console provides application and device simulators for you to
commission data reporting and command delivery before developing real
applications and physical devices. You can also use the application simulator to
verify the service flow after the physical device is developed.

Debugging a Product by Using a Virtual Device
When both device development and application development are not completed,
you can create virtual devices and use the application simulator and device
simulator to test product models and codecs.

Step 1 Log in to the IoTDA console.

Step 2 Choose Products in the left navigation pane.

Step 3 Search for the product to debug and click Debug to access its details. On the
product details page, click the Online Debug tab and perform the following
operations based on whether a new virtual test device is used for debugging:
● If yes, go to Step 4.
● If no, go to Step 5.

Figure 2-42 Adding or selecting a virtual test device

Step 4 Click Add Test Device. In the displayed dialog box, select Virtual device and click
OK to create a virtual device.

Step 5 In the device list, select the virtual device to debug and click Debug to go to the
Online Debug page.

Figure 2-43 Online debugging information

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

Step 6 For an MQTT device, under the Device Simulator tab, select Report Attribute
and enter the corresponding property values, or select Custom Topics, enter a
topic name and message content, and click Send. View the data reporting result in
the online debugging information area and IoTDA processing logs in Message
Trace.

Figure 2-44 MQTT device simulator

Step 7 For an MQTT device, under the Application Simulator tab, select Command
delivery and enter the corresponding command, or select Custom Topics, enter a
topic name and message content, and click Send. View the command delivery
result in the online debugging information area and IoTDA processing logs in
Message Trace.

Figure 2-45 MQTT application simulator

Step 8 For a CoAP device, under the Device Simulator tab, enter a hexadecimal code
stream of the data and click Send. View the data reporting result in the online
debugging information area and IoTDA processing logs in Message Trace.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Figure 2-46 CoAP device simulator

Step 9 For a CoAP device, under the Application Simulator tab, enter a command value,
select the option of cached sending and then click Send, or directly click Send.
View the data reporting result in the online debugging information area and
IoTDA processing logs in Message Trace.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Figure 2-47 CoAP application simulator

----End

Debugging a Product by Using a Physical Device
When the device development is complete but the application development is not,
you can add physical devices and use the application simulator to test devices,
product models, and codecs.

Step 1 On the product details page, click the Online Debug tab, and perform the
following operations based on whether a registered physical device is used for
debugging:

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

● If no, go to Step 4.
● If yes, go to Step 5.

Figure 2-48 Adding or selecting a physical test device

Step 2 Click Add Test Device. In the displayed dialog box, select Physical device, enter
the device information, and click OK.

Step 3 In the device list, select the physical device to debug and click Debug to go to the
Online Debug page.

Figure 2-49 Debugging interface

Step 4 For an MQTT device, under the Application Simulator tab, select Command
delivery and enter the corresponding command, or select Custom Topics, enter a
topic name and message content, and click Send. View the command delivery
result in the online debugging information area and IoTDA processing logs in
Message Trace.

Figure 2-50 MQTT application simulator

Step 5 For a CoAP device, under the Application Simulator tab, enter a command value,
select the option of cached send and then click Send, or directly click Send. View

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

the data reporting result in the online debugging information area and IoTDA
processing logs in Message Trace.

Figure 2-51 CoAP application simulator

----End

2.5 Device Security Center
IoTDA provides the device security center, which provides security detection and
offline analysis.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Security Detection
IoTDA continuously detects device security threats. This section describes security
check items and how to view and handle detected security risks.

NO TE

The following detection items can be used only after being enabled: malicious IP addresses,
memory leakage, abnormal ports, brute-force cracking login, file tampering, Common
Vulnerabilities and Exposures (CVEs), malicious files, abnormal processes, insecure
functions, and insecure protocols. Abnormal port/Malicious IP address checks: Enter
whitelisted ports or IP addresses for checks. The system compares the parameters reported
by the device and the configured whitelist members. You can add IP address segments to
the whitelist, for example, 192.168.1.10/24. You need to configure a blacklist for insecure
protocol detection. The platform will compare the protocols reported by the device against
this blacklist. If any of the protocols used by the device are found in the blacklist, an
anomaly event will be triggered.

Table 2-11 Check item description

Item Description

Connection
mode

No encryption protocol is used to establish secure
connections between devices and IoTDA. This may cause
man-in-the-middle and replay attacks and affect services.

Multiple
connection
establishments
within a unit
time

If a device attempts to establish connections with IoTDA for
multiple times within 1 second, the device may be cracked
with brute force. As a result, identity information may be
leaked, normal devices may be forced to go offline, and
service data may be stolen.

Cryptographic
algorithm suite

Currently, IoTDA checks the following insecure cryptographic
algorithm suites:
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA,
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA,
TLS_PSK_WITH_AES_128_CBC_SHA,
TLS_PSK_WITH_AES_256_CBC_SHA
Insecure cryptographic algorithm suites have security
vulnerabilities, which may cause security risks such as device
data leakage.

Device
authentication
failure

Incorrect device identity authentication information causes
device connection failures. This may affect services.

Malicious IP
address

Whether the device communicates with malicious IP
addresses.

Memory leak
check

Whether memory leaks occur on the device.

Abnormal port Whether abnormal ports are enabled on the device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

Item Description

Brute-force
cracking login

Whether attackers attempt to log in to the device through
brute force cracking.

Device file
tampering

Whether files in a specified directory of a device are
tampered with.

Insecure secret Whether the device secret is secure (combination of letters
and digits). During device registration, if the secret contains
only uppercase letters, lowercase letters, or digits, this event
is triggered.

Insecure
certificate

Whether the certificate validity period is less than the
configured threshold (90 days by default).

Abnormal
message

Whether the size of messages reported by the device exceeds
the configured threshold (200 KB by default).

CVEs Whether the CVEs exist on the device.

Malicious file Whether malicious files exist on the device.

Abnormal
process

Whether abnormal processes exist on the device.

Insecure
function

Whether insecure functions are enabled on the device.

Insecure
protocol

Whether the specified insecure protocols are used in the
device.

Offline Analysis
IoTDA help you analyze device offline causes by collecting statistics on the offline
time range and characteristics of offline devices.

Table 2-12 Offline analysis description

Cause Description

Active offline by
the device

The device sends an MQTT disconnect packet to IoTDA for
disconnection.

Heartbeat
timeout

The device does not comply with the MQTT protocol. It sends
MQTT heartbeat packets to IoTDA within 1.5 times the
configured heartbeat interval. As a result, IoTDA considers
that the device connection is invalid and cuts off the
connection according to protocol requirements.
(Note: The heartbeat interval is specified when the device
establishes a connection with IoTDA.)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Cause Description

Device-platform
TCP connection
cutoff

IoTDA receives a TCP disconnection packet from the device.
As a result, the TCP connection between the device and
IoTDA is cut off.

Device deleted A tenant deletes a device from IoTDA, and IoTDA cuts off the
connection with the device.

Device frozen A tenant freezes a device on IoTDA, and IoTDA cuts off the
connection with the device.

Connection cut
off by the
platform

IoTDA cuts off the connection with the device during
upgrade.

Earlier
connection
cutoff

The device establishes connections with IoTDA repeatedly.
IoTDA cuts off the existing connection and retains the new
connection.

Device secret
reset

When the device secret is reset and the connection is
manually cut off, IoTDA cuts off the connection with the
device.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Device Security Center. The Anomaly Detection
page is displayed.

Figure 2-52 Anomaly detection overview

Step 3 Security Detection and Offline Analysis pages are available. Click Enable
Function to enable the two functions. Otherwise, they cannot be used.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

Figure 2-53 Security detection

Figure 2-54 Offline analysis

Step 4 To enable Security Checks, perform the following steps. Otherwise, skip them.

1. On the Security Checks tab page, click Security Check Configuration. In the
displayed dialog box, click Add.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

Figure 2-55 Anomaly detection - Security check configuration

2. On the configuration page, select the resource space to which the product
belongs and the name of the product, and enable items as required.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Figure 2-56 Anomaly detection - Security check item configuration

Step 5 After the configuration, IoTDA starts security detection on devices. Abnormal
events of the last 48 hours can be stored at most. You can search for security
detection records by device ID, resource space, product, check item, and time
range.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

Figure 2-57 Security detection overview

NO TE

1. Abnormal events in the last 48 hours can be recorded. If the same type of abnormal
events are detected within 1 hour, only the latest record is retained.

2. Currently, offline analysis chart only supports aggregation of abnormal events by hour.
3. The abnormal event data follows a non-immediate write policy, causing a maximum 10-

second delay between the device reporting the event and its stable display on the GUI.
After the device reports an abnormal event for 10 seconds, it can be consistently queried
and shown on the page.

Step 6 Click the button in the operation column on the left to check the detection item
details.

Figure 2-58 Security detection details

Step 7 After offline analysis is enabled, IoTDA automatically analyzes the causes of device
disconnections. Disconnection events of the last 48 hours can be stored at most.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

You can search for the records by device ID, resource space, product, cause, and
time range. You can set the chart to display data by resource space and time
range.

Figure 2-59 Offline analysis overview

NO TE

Abnormal events in the last 48 hours can be recorded. If the same type of offline events are
detected within 1 hour, only the latest record is retained.

Step 8 Click View to view details about each disconnected device in the list.

Figure 2-60 Offline analysis details

Step 9 Click Disable to disable security detection and offline analysis. Then, these
functions are unavailable. To use these functions, enable them again.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Figure 2-61 Prompt for disabling the function

----End

2.6 HarmonyOS Module

2.6.1 HarmonyOS Soft Bus
This page displays a list of all Harmony soft buses and the data can be filtered by
resource space. You can create and delete Harmony soft buses, synchronize
messages, and reset keys for Harmony soft buses, facilitating the unified
management.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Harmony Module > Harmony Soft Bus to query
the list.

Figure 2-62 Overview of Harmony soft buses

Step 3 Click Create Harmony Soft Bus.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Figure 2-63 Creating a Harmony soft bus

Step 4 You can perform operations on the Harmony soft bus in the Operation column.

Figure 2-64 Operation column

Step 5 Click a group name in the Home Group column to go to the corresponding group
details page and perform operations. For details, see Procedure.

Figure 2-65 Group operations

----End

2.6.2 Device Engine
This page is dedicated for device engines. The prerequisites are as follows:

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

● Device-side rules support only command delivery actions.
● Devices must be integrated with IoT Device SDK (C) v1.1.2 or later.
● Devices need to report the SDK version number to IoTDA using the APIs

provided by the SDK.

For details, see Device-side Rules.

2.7 Resource Spaces
The resource space provides independent device management and platform
configuration capabilities at the service layer. As the basic unit of service
management, resources (such as products and devices) created on the platform
must belong to a resource space. You can use the resource space for domain-
based management of multiple service applications.

● You can create a maximum of 10 resource spaces on IoTDA. The space
automatically created by the platform when the IoTDA service is subscribed to
for the first time is the default resource space.

● An appId (parameter app_id in API calls), which is a unique identifier of a
resource space, is allocated by the platform when the resource space is
created.

● After a resource space is created, you can view its appId in the resource space.
● The default resource space cannot be deleted. After a resource space is

deleted, all resources in the space, such as devices, products, and subscription
data, are deleted from the platform and cannot be restored. Exercise caution
when deleting a resource space.

Creating a Resource Space
When you subscribe to IoTDA for the first time, IoTDA automatically creates the
default resource space. You have only one default resource space, which cannot be
deleted.

You can create a product or register a device in the default resource space. You
can also perform the following steps to create a resource space:

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Resource Spaces. In the upper right corner,
click Create Resource Space. On the page displayed, set Space Name and click
OK.

The resource space name must be unique under the account. It can be changed
after the resource space is created.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

----End

NO TE

When creating a resource space, you can specify a resource space ID and it must be globally
unique. If a resource space ID already exists, the system will display a message that
indicates the ID is duplicate. If you deleted a resource space, do not create another resource
space with the same ID as the deleted one within 48 hours. This is because it takes up to 48
hours for associated data in the deleted resource space to be completely cleared. During
this period, resource spaces with the same ID cannot be created.

Querying a Resource Space

After a resource space is created, you can click View in the Operation column to
view the APPID, creation time, and numbers of products, devices, groups and
created rules of the resource space.

2.8 Plug-ins

2.8.1 Introduction
In scenarios such as smart city, campus, and manufacturing, some industry devices
need to be directly connected to the platform. The communication between these
devices and the platform complies with industry protocol standards, such as JT808,
HJ212, and SL651. The platform supports access of these TCP-based devices
through the plug-in extension mechanism.

After the plug-in developed based on the platform specifications is uploaded and
deployed on the console, industry protocol devices can be directly connected to
the platform.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

2.8.2 Procedure
Step 1 Log in to the IoTDA console.

Step 2 Choose Plug-in Management in the left navigation pane.

Step 3 Check whether the plug-in type is hosted or non-hosted. For hosted plug-ins,
create and upload an image in advance by referring to the section about generic-
protocol development in Developer Guide. For non-hosed plug-ins, create a plug-
in, obtain the bridge ID and bridge secret on the page, and perform offline
development. Subsequent steps including image upload are not required.

Step 4 For hosted plug-ins, click the button for uploading an image to upload the plug-in
image in advance. For details about how to create an image, see related guide in
the section of generic-protocol development in Developer Guide.

Step 5 Image upload: Click Upload Image to upload the package of the plug-in image to
deploy. The image file name can contain only letters, digits, underscores (_),
hyphens (-), and periods (.), and ends with .tar. After the image is uploaded, it will
be pushed to the image repository. You can click Image List next to Upload
Image. View the image push status. (By default, each tenant can upload up to 10
image files. To increase the quota, contact the administrator.)

Figure 2-66 Previous image

Step 6 Operations on plug-ins:
● Creation: Click Create Plug-in. In the displayed dialog box, enter the

information and click OK.

a. Hosted plug-ins (deployed by the platform)
To create a hosted plug-in, specify the plug-in name, port number, image,
and CPU resources for the platform to deploy the plug-in.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Figure 2-67 Creating a plug-in

b. Non-hosted plug-ins (deployed by users)
Non-hosting plug-in deployment means that you need to apply for
servers to deploy generic-protocol plug-ins instead of deploying generic-
protocol plug-ins on the IoT platform. The plug-ins you deployed are used
to connect generic-protocol devices to the IoT platform through cloud-to-
cloud interworking.
Choose Plug-in Management, click Create Plug-in, set Plug-in Type to
non-hosting, enter a plug-in name, and click OK. Obtain the bridge ID
and bridge secret.

Figure 2-68 Creating an unhosted plug-in

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Figure 2-69 Non-hosted plug-in created

After obtaining the bridge ID and bridge secret, inject them into the
generic-protocol plug-in as environment variables. On the Overview
page, use the address corresponding to the MQTTS access protocol to
connect devices to the IoT platform. Then, the generic-protocol plug-in
can be deployed in non-hosting mode. Currently, the generic-protocol
plug-in can only establish connections with the IoT platform using the
address corresponding to the MQTTS access protocol.

Figure 2-70 Checking the address corresponding to the MQTTS access
protocol

● Loading: Deploy a plug-in. On the right of the plug-in list, click Load to
deploy the plug-in. (Only hosted plug-ins that are not loaded can be loaded.)

Figure 2-71 Loading a plug-in

● Uninstallation: Stop a deployed plug-in. On the right of the plug-in list, click
Uninstall to stop the plug-in. (Only hosted plug-ins in the running or
abnormal state can be uninstalled.)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Figure 2-72 Uninstalling a plug-in

● Restart: Restart a plug-in. On the right of the plug-in list, click Restart to
restart the plug-in. (Only hosted plug-ins in the running or abnormal state
can be restarted.)

Figure 2-73 Restarting a plug-in

● Upgrade: Change the image version (only versions of the same image can be
changed) and restart the plug-in. On the right of the list, choose More >
Upgrade. (Only hosted plug-ins in the running or abnormal state can be
upgraded.) Select an image version to upgrade the plug-in.

Figure 2-74 Upgrading a plug-in

● Delete: Delete all information about the plug-in. Click Delete to delete the
plug-in. (You can only delete unloaded plug-ins.)

● Editing: Modify the plug-in deployment information, including the name, port,
image, and CPU resources. The modified information takes effect only after
the plug-in is restarted or deployed next time.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Figure 2-75 Modifying a plug-in

Step 7 Check deployment events (only for hosted plug-ins).

Check deployment events to locate faults when plug-in deployment or services are
abnormal.

In the plug-in list, click the plug-in name. The plug-in details page is displayed. In
the pod information area, the View Deployment button is available, as shown in
the following figures.

Figure 2-76 Plug-in management

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

Figure 2-77 Plug-in details

1. Check deployment events.
Click View Deployment. Kubernetes events of plug-in pod deployment are
displayed.

Figure 2-78 Deploying an event

Deployment events can be used to troubleshoot plug-in deployment failures,
including image pull failures and insufficient resources. (Note that
deployment events are stored in the Kubernetes cluster for only 1 hour.)

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

2.9 Message Communications

2.9.1 Overview
IoTDA supports bidirectional device communication. Devices can report data to
IoTDA through APIs on the device side, and the platform can push the data to
applications by using the subscription/push mechanism or forward the data to
other services. Devices can also be remotely controlled by means of command
delivery (using APIs or the IoTDA console).

Message communications are designed based on the product model. Devices
can report properties and messages to the platform, and the platform can
deliver commands, messages, and properties to the devices. Properties and
commands are defined in the product model, whereas messages are not
defined in the product model.

Table 2-13 Bidirectional communications

Data
Type

Messa
ge
Type

Differences Similarities

Upstre
am
data

Propert
y
reporti
ng

Dependent on the product model. The
properties reported must match those
defined in the product model. You can
check the latest device shadow on the
device details page of the IoTDA console,
push the data to the subscribed-to
applications, and check historical data
through IoT Analytics.

Both properties
and messages
can be
reported to the
platform by
calling device-
side APIs, and
forwarded to
other services
using rules.Messag

e
reporti
ng

Independent from the product model. The
platform does not verify the message
content. The latest reported device shadow
data cannot be viewed on the device details
page of the IoTDA console. Historical data
cannot be viewed through IoT Analytics.

Downs
tream
data

Comm
and
deliver
y

Dependent on the product model. The
commands delivered must match those
defined in the product model. The
command delivery is synchronous. (After a
command is delivered, the platform waits
for a response from the device. If no
response is returned, the command delivery
times out.) Commands can be delivered on
the IoTDA console.

Commands,
properties, and
messages can
be delivered by
calling
application-
side APIs.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Data
Type

Messa
ge
Type

Differences Similarities

Propert
y
deliver
y (for
modific
ation
purpos
es)

Dependent on the product model. The
properties delivered must match those
defined in the product model. Property
delivery is synchronous. (After a property is
delivered, the platform waits for a response
from the device. If no response is returned,
the modification times out.) The platform
supports property configuration (device
shadow) on the IoTDA console. Device
properties can be modified through the
device shadow to implement asynchronous
mode.

Messag
e
deliver
y

Independent from the product model. The
platform delivers messages to the device.
Message delivery is asynchronous. (After a
message is delivered, the platform does not
need to wait for a response from the
device.) Messages cannot be delivered from
the IoTDA console.

2.9.2 Data Reporting

Overview
After being registered with IoTDA and powered on, a device can collect and report
data based on the service logic. Data collection and reporting can be triggered by
a schedule or by specific events. Devices can send data to IoTDA in the following
ways:

● Reporting device messages: A device reports custom data to the platform
through message reporting APIs. The platform does not parse or store the
messages reported. Instead, it forwards the messages to other cloud services
for storage and processing based on data forwarding rules. Then, the data is
further processed through the consoles or APIs of the other services.

● Reporting raw device data (in binary or other non-standard formats): A device
reports raw code streams to the platform. The platform uses codecs to parse
the raw data into the standard JSON data defined in the product model and
then performs subsequent processing. When MQTT is used, you can customize
a topic to transparently transmit raw data.

● Reporting device properties: A device reports property data defined in the
product model through property reporting APIs. The platform parses the data
and then performs subsequent processing.

● Batch reporting device properties: A gateway reports data of a batch of
devices to the platform at a time. The platform parses the data and then
performs subsequent processing.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

NO TE

Considering power consumption and bandwidth, CoAP devices can report only raw binary
code streams. The platform uses codecs to convert the code streams into JSON data defined
in the product model before performing subsequent processing.

Figure 2-79 Data reporting

2.9.3 Command Delivery

2.9.3.1 Mechanism
A product model defines commands that can be delivered to the devices.
Applications can call IoTDA APIs to deliver commands to the devices to effectively
manage these devices.

IoTDA supports synchronous and asynchronous command delivery.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

Mechanis
m

Description Application Scenario Applicabl
e
Protocol

Synchrono
us
command
delivery

An application calls the
synchronous command
delivery API to deliver a
command to a specified
device for device control.
The platform sends the
command to the device
and returns the command
execution result in an
HTTP request to the
application. If the device
does not respond, the
platform returns a timeout
message to the
application.

Applicable to commands
that must be executed in
real time, for example,
turning on a street lamp
or closing a gas meter
switch. Applications
should determine the
appropriate time to
deliver a command.

MQTT

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

Mechanis
m

Description Application Scenario Applicabl
e
Protocol

Asynchron
ous
command
delivery

An application calls the
asynchronous command
delivery API to deliver a
command to a specified
device for device control.
The platform sends the
command to the device
and asynchronously pushes
the command execution
result to the application.
Asynchronous command
delivery is classified into
immediate delivery and
delayed delivery.
● In immediate delivery,

the platform delivers
commands to a device
regardless of whether
the device is online. If
the device is offline or
the device does not
receive the command,
the delivery fails.

● In delayed delivery,
IoTDA caches a
command and delivers
it to a device when the
device goes online or
reports data. If a device
has multiple pending
commands, the
platform delivers the
commands in sequence.

● Immediate delivery
applies to scenarios
with high real-time
requirements.

● Delayed delivery
applies to commands
that do not need to
be executed
immediately, for
example, configuring
water meter
parameters.

CoAP

2.9.3.2 Command, Property, and Message Delivery for MQTT Devices
IoTDA supports command delivery, property setting, property query, and message
delivery for MQTT devices. Messages can be delivered immediately or after a
delay.

Command Delivery, Property Setting, and Property Query
The processes of command delivery, property setting, and property query are the
same. After an application sends a command to a device, the application waits for
a message carrying the command execution result from the device. This document
uses command delivery as an example. For details on how to set and query

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

properties, see instructions of the APIs Modifying Device Properties and
Querying Device Properties.

1. An application calls the API Delivering a Device Command to send a
command to IoTDA. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/commands
Content-Type: application/json
X-Auth-Token: ********

{
 "service_id" : "WaterMeter",
 "command_name" : "ON_OFF",
 "paras" : {
 "value" : "ON"
 }
}

2. IoTDA sends the command to the device according to the protocol
specifications.
Example message:
Topic: $oc/devices/{device_id}/sys/commands/request_id={request_id}
Data format:
{
 "object_device_id": "{object_device_id}",
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": "ON"
 }
}

3. After executing the command, the device returns the command execution
result through the API Delivering a Command. Example message:
Topic: $oc/devices/{device_id}/sys/commands/response/request_id={request_id}
Data format:
{
 "result_code": 0,
 "response_name": "COMMAND_RESPONSE",
 "paras": {
 "result": "success"
 }
}

4. The platform synchronously sends a response to the HTTP command. Example
message:

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

Status Code: 200 OK
Content-Type: application/json

{
 "command_id" : "b1224afb-e9f0-4916-8220-b6bab568e888",
 "response" : {
 "result_code" : 0,
 "response_name" : "COMMAND_RESPONSE",
 "paras" : {
 "result" : "success"
 }
 }
}

Message Delivery
MQTT device messages can be delivered immediately or after a delay. When a
device is online, messages are delivered immediately. When a device is offline,
messages are cached and delivered after the device goes online.

● Delayed Delivery
This section describes the delayed delivery process of MQTT messages.

a. An application calls the API Delivering a Device Message to send a
message to IoTDA. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/messages
Content-Type: application/json
X-Auth-Token: ********

{
 "message_id": "99b32da9-cd17-4cdf-a286-f6e849cbc364",
 "name": "messageName",
 "message": "HelloWorld",

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

 "topic": "messageDown"
}

b. IoTDA sends a 201 Created message carrying the message status
PENDING to the application.

c. IoTDA pushes the message result to the application through the API
Pushing a Device Message Status Change Notification. Example
message:
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "resource": "device.message.status",
 "event": "update",
 "notify_data": {
 "message_id": "string",
 "name": "string",
 "device_id": "string",
 "status": "PENDING",
 "timestamp": "string"
 }
 }

d. The device goes online.
e. The device subscribes to the message delivery topic, which is used to

receive messages. For details on the subscribed topic, see 6.
f. IoTDA delivers messages to devices based on protocol specifications.

Example message:
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "object_device_id": "{object_device_id}",
 "name": "name",
 "id": "id",
 "content": "hello"
}

g. The platform pushes the final result of the message to the application.
For details on the message structure, see 3.

● Immediate Delivery
This section describes the immediate delivery process of MQTT messages.

a. An application calls the API Delivering a Device Message to send a
message to IoTDA. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/messages
Content-Type: application/json
X-Auth-Token: ********

{

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

 "message_id": "99b32da9-cd17-4cdf-a286-f6e849cbc364",
 "name": "messageName",
 "message": "HelloWorld",
 "topic": "messageDown"
}

b. IoTDA delivers messages to devices based on protocol specifications.
Example message:
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "object_device_id": "{object_device_id}",
 "name": "name",
 "id": "id",
 "content": "hello"
}

c. IoTDA pushes the message result to the application through the API
Pushing a Device Message Status Change Notification. Example
message:
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "resource": "device.message.status",
 "event": "update",
 "notify_data": {
 "message_id": "string",
 "name": "string",
 "device_id": "string",
 "status": "string",
 "timestamp": "string"
 }
 }

Message Delivery Status

Status Description

PENDING If an MQTT device is offline, IoTDA caches the message. In this
case, the task status is PENDING.

TIMEOUT If IoTDA does not deliver the message in the pending status
within one day, the task status changes to TIMEOUT.

DELIVERED After IoTDA sends the message to the device, the task status
changes to DELIVERED.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

Status Description

FAILED If IoTDA fails to send a message to the device, the task status
changes to FAILED.

Synchronous Command Delivery to an MQTT Device
The platform supports command delivery to an MQTT device by calling the API
Delivering a Device Command or creating a command delivery task on the
console. This section describes how to create a command delivery task on the
console.

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices. In the device list, click
View in the row of a device to access its details.

Step 3 Click the Commands tab, and click Deliver Command in the Synchronous
Command Delivery area. In the dialog box that is displayed, enter your
information and click Yes.

NO TE

● The commands can be delivered only after being defined in the product model.
● MQTT devices support only synchronous command delivery. Devices using CoAP support

only asynchronous command delivery.

----End

2.9.3.3 Command Delivery for Devices Using CoAP
For devices using CoAP, IoTDA provides two delivery mechanisms: immediate
delivery and delayed delivery. The parameter send_strategy in the command
delivered from an application to IoTDA specifies the delivery mechanism.

● If send_strategy is immediately, the command is delivered immediately.
● If send_strategy is delay, the command is cached before being delivered.

Immediate Delivery
This section describes the process of immediate command delivery.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

1. An application calls the API Delivering an Asynchronous Command to send
a command to IoTDA. The send_strategy parameter in the command request
is set to immediately. Example message:
POST https://{endpoint}/v5/iot/{project_id}/devices/{device_id}/async-commands
Content-Type: application/json
X-Auth-Token: ********

{
 "service_id" : "WaterMeter",
 "command_name" : "ON_OFF",
 "paras" : {
 "value" : "ON"
 },
 "expire_time": 0,
 "send_strategy": immediately
}

2. IoTDA uses the codec to encode the command request, and sends the
command through the Execute operation of the APIs for device management
and service implementation defined in the CoAP protocol. The message body
is in binary format.

3. IoTDA sends a 200 OK message carrying the command status SENT to the
application. (If the device is offline or the device does not receive the
command, the delivery fails and the command status is FAILED.)

4. The device returns an ACK message after receiving the command.
5. If the application has subscribed to command status change notifications,

IoTDA pushes a message to the application by calling the API Pushing a
Command Status Change Notification. The command status carried in the
message is DELIVERED. Example message:
Method: POST
request:
Body:
{
 "resource": "device.command.status",
 "event": "update",
 "event_time": "20200811T080745Z",

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

 "notify_data": {
 "header": {
 "app_id": "8d4a34e5363a49bfa809c6bd788e6ffa",
 "device_id": "5f111a5a29c62ac7edc88828_test0001",
 "node_id": "test0001",
 "product_id": "5f111a5a29c62ac7edc88828",
 "gateway_id": "5f111a5a29c62ac7edc88828_test0001",
 "tags": []
 },
 "body": {
 "command_id": "49ca40af-7e14-4f7b-b97b-78cdd347a6b9",
 "created_time": "20200811T080738Z",
 "sent_time": "20200811T080738Z",
 "delivered_time": "20200811T080745Z",
 "response_time": "",
 "status": "DELIVERED",
 "result": null
 }
 }
}

6. After the command is executed, the device returns the command execution
result in a 205 Content message.

7. If the application has subscribed to command status change notifications,
IoTDA uses the codec to decode the command response and sends a push
message to the application by calling the API Pushing a Command Status
Change Notification. The command status carried in the message is
SUCCESSFUL. Example message:
Method: POST
request:
Body:
{
 "resource": "device.command.status",
 "event": "update",
 "event_time": "20200811T080745Z",
 "notify_data": {
 "header": {
 "app_id": "8d4a34e5363a49bfa809c6bd788e6ffa",
 "device_id": "5f111a5a29c62ac7edc88828_test0001",
 "node_id": "test0001",
 "product_id": "5f111a5a29c62ac7edc88828",
 "gateway_id": "5f111a5a29c62ac7edc88828_test0001",
 "tags": []
 },
 "body": {
 "command_id": "49ca40af-7e14-4f7b-b97b-78cdd347a6b9",
 "created_time": "20200811T080738Z",
 "sent_time": "20200811T080738Z",
 "delivered_time": "20200811T080745Z",
 "response_time": "20200811T081745Z",
 "status": "SUCCESSFUL",
 "result": {
 "resultCode":"SUCCESSFUL",
 "resultDetail": {
 "value": "ON"
 }
 }
 }
 }
}

Delayed Delivery
This section describes the process of delayed command delivery.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

1. An application calls the API Delivering an Asynchronous Command to send
a command to IoTDA. The send_strategy parameter in the command request
is set to delay.

2. IoTDA adds the command to the cache queue and reports a 200 OK message.
The command status is PENDING.

3. The device goes online or reports data to the platform.
4. IoTDA uses the codec to encode the command request and sends the

command to the device according to the protocol specifications.
5. If the application has subscribed to command status change notifications,

IoTDA pushes a message to the application by calling the API Pushing a
Command Status Change Notification. The command status carried in the
message is SENT.

6. The subsequent flow is the same as 4 to 7 described in the immediate
delivery scenario.

Command Execution Status
The figure below illustrates the command execution status and the table below
describes the status change mechanism.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

Status Description

PENDING ● For a device using CoAP in delayed delivery mode, IoTDA
caches a command if the device has not reported data. The
command status is PENDING.

● This status does not exist for devices using CoAP in immediate
delivery mode.

EXPIRED ● For a device using CoAP in delayed delivery mode, if IoTDA
does not deliver a command to the device within a specified
time, the command status is EXPIRED. The expiration time is
subject to the value of expireTime carried in the command
request. If expireTime is not carried, the default value (24
hours) is used.

● This status does not exist for devices using CoAP in immediate
delivery mode.

SENT ● For a device using CoAP in delayed delivery mode, IoTDA
sends a cached command when receiving data reported by
the device. In this case, the command status changes from
PENDING to SENT.

● For a device using CoAP in immediate delivery mode, if the
device is online when the platform delivers a command, the
command status is SENT.

TIMEOUT If IoTDA does not receive a response within 180 seconds after
delivering a command to a device using CoAP, the command
status is TIMEOUT.

DELIVERED If IoTDA receives a response from a device, the command status
is DELIVERED.

SUCCESSFU
L

If IoTDA receives a result indicating that the command is
executed, the command status is SUCCESSFUL.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

Status Description

FAILED ● If IoTDA receives a result indicating that the command
execution failed, the command status is FAILED.

● For a device using CoAP in immediate delivery mode, if the
device is offline when the platform delivers a command, the
command status is FAILED.

Asynchronous Command Delivery
The platform supports command delivery to a device using CoAP by calling the
API Delivering a Device Command or creating a command delivery task on the
console. This section describes how to create a command delivery task on the
console.

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Devices > All Devices. In the device list, click
View in the row of a device to access its details.

Step 3 Click the Commands tab, and click Deliver Command in the Asynchronous
Command Delivery area. In the dialog box that is displayed, enter your
information and click Yes.

NO TE

● The commands can be delivered only after being defined in the product model.
● MQTT devices support only synchronous command delivery. Devices using CoAP support

only asynchronous command delivery.

----End

2.9.4 Custom Topic Communications

Overview
The platform uses topics to communicate with devices over MQTT. There are
custom topics and system topics. System topics are basic communication topics
preconfigured on the platform. You can also customize topics on the platform
based on service requirements.

IoTDA enables transparent data transmission of MQTT custom topics to simplify
the process of migrating MQTT devices from other platforms to IoTDA.

● This feature allows devices that comply with MQTT specifications to be
migrated to IoTDA without any modification. In addition, the data pushed by
IoTDA to upper-layer applications is compatible with the original format of
the devices, which reduces the adaptation and modification workload of
devices and upper-layer applications to be quickly migrated to IoTDA.

● This feature enables devices to quickly connect to native MQTT devices
without a large amount of adaptation and modification on the original
devices and applications. In addition, codecs are optional. You can continue to
develop encoding and decoding scripts to interact with upper-layer

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

applications based on the IoTDA model, or choose to transparently transmit
data.

Scenarios
● Devices publish messages to a custom topic, from which an application

receives the messages using the Data Forwarding function.
● An application calls the API for delivering a message to a device to publish

messages to a specified custom topic. Devices subscribe to this topic to receive
messages from the server.

Category

Table 2-14 Topic classification

Categ
ory

Description

System
topic

The platform predefines topics for communications with devices. For
details of the topic list and functions, see "API Reference on the Device
Side" > "Topics" in the API Reference.

Custo
m
topic

Devices and the platform can communicate based on custom topics.
Types of custom topics:
● Topics defined in the product are prefixed with $oc/devices/

{device_id}/user/. Therefore, these topics are also called custom
topics with fixed prefix. During message reporting or delivery, the
platform checks whether the topic is defined in the product.
Undefined topics will be rejected by the platform.

● Topics that do not start with $oc, for example, /aircondition/
data/up. These topics enable upstream and downstream message
communications based on MQTT rules. The platform does not verify
the topic permission.

Constraints
● You can define a maximum of 50 custom topics for a product model by

default.
● Custom topics are only available for message communications.
● Maximum length of a custom MQTT topic: 128 bytes.

Adding a Custom Topic
1. Log in to the IoTDA console.
2. Choose Products in the left navigation pane.
3. Select an MQTT product. On the product details page, click the Topic

Management tab, select Custom Topics, and click Add Fixed Prefix Topic.
4. In the dialog box displayed, select device operation permissions and enter the

topic name.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

Table 2-15

Paramete
r

Description

Device
Operation
Permission
s

● Publish: Devices can report messages using this topic. A
topic is carried in a device message during data transfer for
better classification.

● Subscribe: Applications can specify a topic to deliver
messages to devices.

● Publish & Subscribe: Devices can report and receive
messages using this topic.

Name The topic prefix is fixed at $oc/devices/{device_id}/user/.
Replace {device_id} with the actual device ID during publishing
and subscription. A custom topic must be in a slash-separated
format.
Enter 1 to 64 characters. Use only digits, letters, underscores
(_), and slashes (/). The slash cannot be consecutive or be the
end.
Notes:
● Custom topics do not support custom variables. For

example, {type} in $oc/devices/{device_id}/user/setting/
{type} is a variable and is not supported.

● Currently, custom topics do not support wildcard characters
and cannot contain plus signs (+) or number signs (#)

Descriptio
n

Description of the topic.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

5. Click OK.
After the topic is added, you can modify or delete it in the custom topic list.

Transparent Data Transmission Processes
The following figure shows the transparent data transmission process. Compared
with the original process, the difference lies in the message format during
transmission.

Figure 2-80 Custom Topic Data Transparent Transmission

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

Figure 2-81 Original process

Transparent Transmission Modes

The following shows the comparison between SDK integration and custom topic
data transparent transmission.

SDK integration
● Devices must be integrated with the IoT Device SDK or reconstructed based

on the IoT southbound MQTT API specifications of IoTDA.
● Codecs are optional. If the device and IoTDA exchange messages based on the

product model, the codec is not required. Otherwise, a codec needs to be
developed to convert the upstream messages of the device into the product
model messages that can be understood by IoTDA, and convert the product
model message delivered by IoTDA into a message that can be understood by
the device.

● Upper-layer applications need to be integrated and developed based on the
data push format of IoTDA.

Custom topic data transparent transmission

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

● Devices can access the platform in native MQTT mode without integrating
with the IoT Device SDK. For details about the authentication mode, see "API
Reference on the Device Side" > "Device Connection Authentication" in API
Reference.

● Codec development is optional. Messages can be transparently transmitted.
Therefore, codec script development and upper-layer application adaptation
are not required.

Message Reporting with Data Transparent Transmission

For details about how to develop the codec and the encoding and decoding
processes, see "Developing a Codec" in Developer Guide.

Table 2-16 Example

Scenario Data
Type

Data Reported by the Device Data Received by the
Platform

Check
the
format
of the
reported
topic. If
the topic
starts
with
$oc, the
message
is a
system
message
and is
directly
reported.
The
reported
data can
be of
the
Object
or
String
format.

String topic:$oc/devices/
{device_id}/sys/messages/up
{
"object_device_id":
"{object_device_id}",
"name": "name",
"id": "id",
"content": "hello"
}

{
"topic": "$oc/devices/
{device_id}/sys/
messages/up",
"content": {
"object_device_id":
"{object_device_id}",
"name": "name",
"id": "id",
"content": "hello"
}
}

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

Scenario Data
Type

Data Reported by the Device Data Received by the
Platform

Object topic:$oc/devices/
{device_id}/sys/messages/up
{
"object_device_id":
"{object_device_id}",
"name": "name",
"id": "id",
"content": {
"name": "huhu"
}
}

{
"topic": "$oc/devices/
{device_id}/sys/
messages/up",
"content": {
"object_device_id":
"{object_device_id}",
"name": "name",
"id": "id",
"content": {
"name": "huhu"
}
}
}

For
topics
whose
names
do not
start
with
$oc,
obtain
the
value of
data_for
mat in
the
product
informat
ion.
Data is
converte
d based
on the
value of
data_for
mat.

For
JSON
format,
convert
data to
the
JSON
format.

topic: /messages/custom/up
{
"action": "test"
}

{
"topic": "/messages/
custom/up",
"content": {
"action": "test"
}
}

For
binary
format,
data
needs
to be
Base64-
encrypt
ed
before
being
pushed.

topic: /messages/custom/up
"data"

{
"topic": "/messages/
custom/up",
"content":
"base64(data)"
}

Message Delivery with Data Transparent Transmission

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

For details about how to develop the codec and the encoding and decoding
processes, see "Developing a Codec" in Developer Guide.

Key Fields
(DeviceMessage)

Data
Type

Field Description

topic String Topic in the standard format of the
platform, which starts with $oc/devices/
{device_id}/.

full_topic String Custom topic, which is corresponding to the
topic_full_name field transferred from the
platform.

message_id String Message ID, which is globally unique.

base64_data String Custom topic, which can carry the Base64-
encoded message body.

data String Non-encoded message body that can be
carried by a custom topic or a topic in the
platform format.

NO TE

● You can select either topic (topic in the platform format) or full_topic (custom topic). If
both fields contain data, the system reports an error.

● If you select the custom topic, base64_data and data are available. If you select the
topic in the platform format, only data can be carried.

Table 2-17 Example

Scenario Message Delivered by the
Platform

Message Received by the
Device

If encoding is
set to base64,
the message
is delivered as
the payload.

{
"message_id": "99b32da9-
cd17-4cdf-a286-f6e849cbc364",
"name": "messageName",
"message":
"dGhpcyBpcyBhIGV4YW1wbGU",
"encoding": "base64",
"payload_format": "standard",
"topic_full_name": "/device/
custom/down"
}

"this is an example"
(original information after
the message is decoded
using Base64)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

Scenario Message Delivered by the
Platform

Message Received by the
Device

When
encoding is
set to none
and payload
is set to raw,
the message
is delivered as
the payload.

{
"message_id": "99b32da9-
cd17-4cdf-a286-f6e849cbc364",
"name": "messageName",
"message":{
"name":"test",
"action":"move"
},
"encoding": "none",
"payload_format": "raw",
"topic_full_name": "/device/
custom/down"
}

{
"name":"test",
"action":"move"
}

When
encoding is
set to none
and payload
is set to
standard, the
message is
delivered in
the standard
format of
IoTDA.

{
"message_id": "99b32da9-
cd17-4cdf-a286-f6e849cbc364",
"name": "messageName",
"message":{
"name":"test",
"action":"move"
},
}

{
"object_device_id":
"12345678901",
"name": "reboot",
"id":
"709b334b-568d-4d5a-960
a-1666d775f2c6",
"content": {
"name": "test",
"action":"move"
}
}

2.9.5 M2M Communications

Overview
IoTDA supports MQTT-based machine-to-machine (M2M) communications. The
platform processes the connection and communication requests from devices, so
you can focus on service implementation.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

Figure 2-82 Service flow

NO TE

● By default, you do not have the permission to enable the inter-device message
communications. Contact R&D engineers to configure the permission.

Scenarios
● Instant messaging scenario where a sender and recipient communicate with

each other.

● Smart home scenario where messages are exchanged between mobile apps
and smart devices.

Constraints
1. Only one-to-one communications are supported.

2. Max. message size: 64 KB.

3. Max. M2M message reporting TPS: 500/s.

4. M2M messages are not cached. If the recipient device is offline, the messages
will be lost.

Procedure

Step 1 To use the M2M communications, you need to configure a topic in the product
and assign the publish and subscribe permissions to the topic. The procedure is as
follows:

1. Log in to the IoTDA console.

2. In the navigation pane, choose Products. Select MQTT for Protocol.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

Figure 2-83 Creating a product

CA UTION

Select JSON for Data Type if the inter-device communications use JSON data.
Select Binary for Data Type if the inter-device communications do not use
JSON data.

3. Create a custom topic in the product, for example, $oc/devices/{device_id}/
user/up. The topic must have publish and subscribe permissions.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

Figure 2-84 Custom topic

Step 2 After configuring a topic, you can implement M2M communications based on your
service scenario. The following uses MQTT.fx as an example to describe how to
implement M2M communications.

1. Register device A and device B under the product created in 1.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Figure 2-85 Registering a device

2. Start two MQTT simulators to simulate devices A and B, respectively. For
details about how to use the MQTT simulator, see "Development on the
Device Side" > "Accessing Using MQTT Demos" > "Using the MQTT Simulator
for Debugging" in the Developer Guide.

3. Use device B to subscribe to the topic $oc/devices/{device_id}/user/up.
Replace {device_id} with the device ID of device B.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Figure 2-86 Device B subscribing to topics

4. Use device A to send a message to device B. On the MQTT simulator of device
A, enter topic $oc/devices/{device_id}/user/up (replace {device_id} with the
device ID of device B). Enter the message to be sent in the content text box
and click Publish.

Figure 2-87 Device A sending a message

Device B receives the message from device A, as shown in the following
figure.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

Figure 2-88 Device B receiving a message

----End

2.10 Subscription/Push

2.10.1 Overview
After a device is connected to IoTDA, the device can communicate with the
platform. The device reports data to the platform using product models. After the
subscription/push configuration on the console is complete, the platform pushes
messages about device lifecycle changes, reported device properties, reported
device messages, device message status changes, device status changes, and batch
task status changes to the application.

For details about the subscription modes supported by IoTDA, see Data
Forwarding.

Subscribing to Data
After connecting to IoTDA, an application calls an API to subscribe to data.

● For details about how to configure subscriptions on the console, see Data
Forwarding.

Format of Pushed Data
After the data subscription is successful, IoTDA pushes the data to the application.
For details about the data format example, see "Data Transfer APIs".

NO TE

In the HTTP message header, the value of Content-Type is application/json, and the
character set is UTF-8.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

2.10.2 Kafka Subscription/Push
Subscription: Distributed Message Service (DMS) for Kafka, ROMA Connect, and
Third-party message queue (Kafka) are based on the Kafka protocol. By creating a
subscription task on the IoTDA console, or calling IoTDA APIs to configure and
activate rules, you can obtain changed device service details (such as device
lifecycle management, device data reporting, device message status, and device
status) and management details (software/firmware upgrade status and result)
from IoTDA. The Kafka message channel must be specified during subscription
creation.

Push: After a subscription is created, IoTDA pushes the corresponding change to
the specified Kafka message service based on the type of data subscribed. If an
application does not subscribe to a specific type of data notification, IoTDA does
not push the data to the application even if the data has changed. You can use
the Kafka client to establish a connection with IoTDA to receive data.

Figure 2-89 Kafka subscription/push

Push mechanism: After IoTDA pushes messages to the Kafka server, you need to
consume messages on the Kafka server. Otherwise, data will be stacked on the
Kafka server.

Subscribing to Data
After connecting to IoTDA, an application calls an API to subscribe to data.

● For details on how to configure Kafka subscriptions on the console, see
Configuring Kafka Subscription.

Format of Pushed Data
After the data subscription is successful, IoTDA pushes the data to the application.
For details about the data format example, see "Data Transfer APIs".

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

Configuring Kafka Subscription

This section describes how to configure Kafka subscription on the IoTDA console.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Parameter Description

Rule Name Specify the name of a rule to create.

Description Describe the rule.

Data Source ● Device property: A property value reported by a device in a
resource space will be forwarded.

● Device message: A message reported by a device in a
resource space will be forwarded.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded.

● Device status: The status change of a directly connected
device in a resource space will be forwarded.

● Device event: Only events you defined in the product will be
forwarded.

● Batch task: The batch task status will be forwarded.
● Product: Product information, such as product addition,

deletion, and update, will be forwarded.
● Device: Device information, such as device addition, deletion,

and update, will be forwarded.
● Device alarm: Device alarm information, such as device

alarm generation and clearance, will be forwarded.
● Asynchronous command status of the device: The

command status change of the device will be forwarded.

Trigger After the data source is selected, the platform automatically
matches the trigger event.

Resource
Space

You can select a single resource space or all resource spaces.

SQL Filter
Statements

You can edit the SQL statements for processing message data
and set the data filtering statements.
Click Edit SQL to edit the SQL statements for processing
message fields.
For details, see SQL Statements.

Step 4 Set the forwarding target.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Click Add, select Third-party message queue (Kafka) from the drop-down list,
set parameters by referring to Table 2-18, and click OK.

Table 2-18 Setting the forwarding target

Parameter Description

Forwarding
Target

Select Third-party message queue (Kafka).

Connection
Address

Specify the connection address list of the Kafka server.

Topic Specify the topic of the forwarding target.

User
Authentication
Type

The default type is PAAS, in which the Kafka server does not
authenticate users. The Kafka server also supports PLAIN
and SCRAM SASL authentication. Both modes are based on
username and password. SCRAM is more secure than PLAIN
and includes the SCRAM-SHA-256 and SCRAM-SHA-512
algorithms.

Username If SASL authentication is used, you need to enter the
username.

Password If SASL authentication is used, you need to enter the
password.

Step 5 Enable a rule.

After the rule is configured, click Enable Rule to start data forwarding.

----End

2.10.3 AMQP Subscription/Push

2.10.3.1 Overview

Subscription: AMQP is short for Advanced Message Queuing Protocol. By creating
a subscription task on the IoTDA console, or calling IoTDA APIs to configure and
activate rules, you can obtain changed device service details (such as device
lifecycle management, device data reporting, device message status, and device
status) and management details (software/firmware upgrade status and result)
from IoTDA. The AMQP message channel must be specified during subscription
creation.

Push: After a subscription is created, IoTDA pushes the corresponding change to
the specified AMQP message queue based on the type of data subscribed. If an
application does not subscribe to a specific type of data notification, IoTDA does
not push the data to the application even if the data has changed. You can use
the AMQP client to establish a connection with IoTDA to receive data.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

Figure 2-90 AMQP subscription/push

Push mechanism: After receiving a message from IoTDA, the application returns a
response. (The automatic response mode is recommended.) If the application does
not pull data after the connection is established, data will be stacked on the
server. When the maximum cache duration (one day) is reached, IoTDA clears the
data. If the application does not respond in time after receiving the message and
the persistent connection is interrupted, the corresponding data will be pushed
again in the next connection established.

2.10.3.2 AMQP Client Access

After calling APIs to configure and activate a rule, connect the AMQP client to
IoTDA, and then run the AMQP client on your server to receive subscribed
messages.

Protocol Version

For details on AMQP, see AMQP.

IoTDA supports only the AMQP 1.0 protocol.

Connection Establishment and Authentication
1. The AMQP client establishes a TCP connection with IoTDA and performs TLS

handshake verification.

NO TE

To ensure security, the AMQP client must use TLS 1.2 or a later version for encryption.
Non-encrypted TCP transmission is not supported.

2. The client requests to set up a connection.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

https://www.amqp.org/?spm=a2c4g.11186623.2.16.4954719fdfh8Qf

3. The client sends a request to IoTDA to establish a receiver link (a
unidirectional channel for IoTDA to push data to the client).
The receiver link must be set up within 15 seconds after the connection is set
up on the client. Otherwise, IoTDA will close the connection.
After the receiver link is set up, the client is connected to IoTDA.

NO TE

Only one receiver link can be created for a connection, and sender links cannot be
created. Therefore, the platform can push messages to the client, but the client cannot
send messages to the platform.

Connection Configuration Parameters
The table below describes the connection address and connection authentication
parameters for the AMQP client to connect to IoTDA.

● AMQP access domain name: amqps://${address}
● Connection string: amqps://${address}:5671?

amqp.vhost=default&amqp.idleTimeout=8000&amqp.saslMechanisms=PLAIN

Parameter Description

address Address accessed by AMQP. The value can be a domain
name or an IP address.
Log in to the IoTDA console, choose Overview to obtain
the AMQP access address.

amqp.vhost Currently, AMQP uses the default host. Only the default
host is supported.

amqp.saslMech
anisms

Connection authentication mode. Currently, PLAIN-SASL is
supported.

idle-time-out Heartbeat interval, in milliseconds. If the heartbeat
interval expires and no frame is transmitted on the
connection, IoTDA closes the connection.

● Port: 5671
● Client identity authentication parameters

username = "accessKey=${accessKey}|timestamp=1599116822987|"
password = "${accessCode}"

Parameter Mandato
ry or
Optional

Description

accessKey Mandator
y

An accessKey can be used to establish a
maximum of 32 concurrent connections.
When establishing a connection for the first time,
preset the parameter by following the instructions
provided in Obtaining the AMQP Access
Credential.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

Parameter Mandato
ry or
Optional

Description

timestamp Mandator
y

Indicates the current time. The value is a 13-digit
timestamp, accurate to milliseconds.
The server verifies the client timestamp. There is a
5-minute difference between the client timestamp
and server timestamp.

accessCode Mandator
y

The value can contain a maximum of 256
characters.
When you establish a connection for the first time
or the accessCode is lost, obtain the access
credential by following the instructions provided
in Obtaining the AMQP Access Credential.

Obtaining the AMQP Access Credential
If an application uses AMQP to access IoTDA for data transfer, preset an access
credential.

You can preset an access credential on the console or by calling the API
Generating an Access Credential. The procedure for using the console to preset
an access credential is as follows:

Step 1 Log in to the IoTDA console.

Step 2 In the left navigation pane, choose Overview. On the displayed page, click Preset
Access Credential to preset the accessCode and accessKey.

Figure 2-91 Presetting an access credential

NO TE

If you already have an access credential, the accessKey cannot be used after you preset the
access credential again.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Connection Specifications

Key Documentation

Maximum number of queues that can
be connected to a connection

5

Maximum number of queues for a
user

10

Maximum number of connections for
a tenant

16

Maximum number of cached messages
for an IoTDA instance

100

Maximum number of connections for
an instance

100

Maximum number of concurrent
connection requests for a single
instance

50 TPS

Timeout interval from the time when a
connection is created to the time when
the queue subscription is successful.

30s

Receiving Push Messages
After the receiver link between the client and platform is established, the client
can proactively pull data or register a listener to enable the platform to push data.
The proactive mode is recommended, because the client can pull data based on its
own capability.

2.10.3.3 Java SDK Access Example
An AMQP-compliant JMS client connects to IoTDA and receives subscribed
messages from IoTDA.

Requirements for the Development Environment
JDK 1.8 or later has been installed.

Obtaining the Java SDK
The AMQP SDK is an open-source SDK. If you use Java, you are advised to use the
Apache Qpid JMS client. Visit Qpid JMS to download the client and view the
instructions for use.

Adding a Maven Dependency
<!-- amqp 1.0 qpid client -->
 <dependency>
 <groupId>org.apache.qpid</groupId>

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

https://qpid.apache.org/releases/index.html

 <artifactId>qpid-jms-client</artifactId>
 <version>0.50.0</version>
 </dependency>

Code Samples
You can click here to obtain the Java SDK access example. For details on the
parameters involved in the demo, see AMQP Client Access.
package com.***.iot.amqp.jms;

import org.apache.qpid.jms.JmsConnection;
import org.apache.qpid.jms.JmsConnectionFactory;
import org.apache.qpid.jms.JmsConnectionListener;
import org.apache.qpid.jms.message.JmsInboundMessageDispatch;
import org.apache.qpid.jms.transports.TransportOptions;
import org.apache.qpid.jms.transports.TransportSupport;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.net.URI;
import java.util.Hashtable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class HwIotAmqpJavaClientDemo{
 // Asynchronous thread pool. You can adjust the parameters based on service features or use other
asynchronous processing modes.
 private final static ExecutorService executorService = new
ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(),
 Runtime.getRuntime().availableProcessors() * 2, 60,
 TimeUnit.SECONDS, new LinkedBlockingQueue<>(5000));

 public static void main(String[] args) throws Exception{
 // accessKey for the access credential.
 String accessKey = "${yourAccessKey}";
 long timeStamp = System.currentTimeMillis();
 // Method to assemble userName. For details, see AMQP Client Access.
 String userName = "accessKey=" + accessKey + "|timestamp=" + timeStamp;
 // accessCode for the access credential.
 String password = "${yourAccessCode}";
 // Assemble the connection URL according to the qpid-jms specifications.
 String connectionUrl = "amqps://{address}:5671?
amqp.vhost=default&amqp.idleTimeout=8000&amqp.saslMechanisms=PLAIN";
 Hashtable<String, String> hashtable = new Hashtable<>();
 hashtable.put("connectionfactory.HwConnectionURL", connectionUrl);
 // Queue name. You can use DefaultQueue.
 String queueName = "${yourQueue}";
 hashtable.put("queue.HwQueueName", queueName);
 hashtable.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.qpid.jms.jndi.JmsInitialContextFactory");
 Context context = new InitialContext(hashtable);
 JmsConnectionFactory cf = (JmsConnectionFactory) context.lookup("HwConnectionURL");
 // Multiple queues can be created for one connection. Match queue.HwQueueName with
queue.HwQueueName.
 Destination queue = (Destination) context.lookup("HwQueueName");

 // Trust the server.
 TransportOptions to = new TransportOptions(); to.setTrustAll(true);
 cf.setSslContext(TransportSupport.createJdkSslContext(to));

 // Create a connection.
 Connection connection = cf.createConnection(userName, password);
 ((JmsConnection) connection).addConnectionListener(myJmsConnectionListener);
 // Create a session.
 // Session.CLIENT_ACKNOWLEDGE: After receiving a message, manually call message.acknowledge().

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/amqp/amqp-demo.zip

 // Session.AUTO_ACKNOWLEDGE: The SDK automatically responds with an ACK message.
(recommended processing)
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 connection.start();
 // Create a receiver link.
 MessageConsumer consumer = session.createConsumer(queue);
 // Messages can be processed in either of the following ways:
 // 1. Proactively pull data (recommended processing). For details, see receiveMessage(consumer).
 // 2. Add a listener. For details, see consumer.setMessageListener(messageListener). The server
proactively pushes data to the client at an acceptable data rate.
 receiveMessage(consumer);
 // consumer.setMessageListener(messageListener);
 }

 private static void receiveMessage(MessageConsumer consumer) throws JMSException{
 while (true){
 try{
 // It is recommended that received messages be processed asynchronously. Ensure that the
receiveMessage function does not contain time-consuming logic.
 Message message = consumer.receive(); processMessage(message);
 } catch (Exception e) {
 System.out.println("receiveMessage hand an exception: " + e.getMessage());
 e.printStackTrace();
 }
 }

 }

 private static MessageListener messageListener = new MessageListener(){
 @Override
 public void onMessage(Message message){
 try {
 // It is recommended that received messages be processed asynchronously. Ensure that the
onMessage function does not contain time-consuming logic.
 // If the service processing takes a long time and blocks the thread, the normal callback after the
SDK receives the message may be affected.
 executorService.submit(() -> processMessage(message));
 } catch (Exception e){
 System.out.println("submit task occurs exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
 };

 /**
 * Service logic for processing the received messages
 */
 private static void processMessage(Message message) {
 try {
 String body = message.getBody(String.class); String content = new String(body);
 System.out.println("receive a message, the content is " + content);
 } catch (Exception e){
 System.out.println("processMessage occurs error: " + e.getMessage());
 e.printStackTrace();
 }
 }

 private static JmsConnectionListener myJmsConnectionListener = new JmsConnectionListener(){
 /**
 * Connection established.
 */
 @Override
 public void onConnectionEstablished(URI remoteURI){
 System.out.println("onConnectionEstablished, remoteUri:" + remoteURI);
 }

 /**
 * The connection fails after the maximum number of retries is reached.
 */

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

 @Override
 public void onConnectionFailure(Throwable error){
 System.out.println("onConnectionFailure, " + error.getMessage());
 }

 /**
 * Connection interrupted.
 */
 @Override
 public void onConnectionInterrupted(URI remoteURI){
 System.out.println("onConnectionInterrupted, remoteUri:" + remoteURI);
 }

 /**
 * Automatic reconnection.
 */
 @Override
 public void onConnectionRestored(URI remoteURI){
 System.out.println("onConnectionRestored, remoteUri:" + remoteURI);
 }

 @Override
 public void onInboundMessage(JmsInboundMessageDispatch envelope){
 System.out.println("onInboundMessage, " + envelope);
 }

 @Override
 public void onSessionClosed(Session session, Throwable cause){
 System.out.println("onSessionClosed, session=" + session + ", cause =" + cause);
 }

 @Override
 public void onConsumerClosed(MessageConsumer consumer, Throwable cause){
 System.out.println("MessageConsumer, consumer=" + consumer + ", cause =" + cause);
 }

 @Override
 public void onProducerClosed(MessageProducer producer, Throwable cause){
 System.out.println("MessageProducer, producer=" + producer + ", cause =" + cause);
 }
 };
}

2.10.3.4 Node.js SDK Access Example
This topic describes how to use a Node.js AMQP SDK to connect to IoTDA and
receive subscribed messages from IoTDA.

Development Environment
Node.js 8.0.0 or later is used.

Downloading the SDK
For the AMQP SDK using Node.js, rhea is recommended. Visit rhea to download
the repository and view the user guide.

Adding Dependencies
Add the following dependencies to the package.json file:

"dependencies": {
 "rhea": "^1.0.12"
 }

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

https://github.com/amqp/rhea

Code Samples
Create a JavaScript file (for example, HwIotAmqpClient.js) on the local computer,
save the following sample code to the file, and modify connection parameters by
referring to AMQP Client Access.

● For the access domain name, see AMQP access domain name.
● For the method to assemble userName, see Client identity authentication

parameters.
● For the accessCode, see Client identity authentication parameters.
const container = require('rhea');
// Obtain the timestamp.
var timestamp = Math.round(new Date());

// Set up a connection.
var connection = container.connect({
 //Access domain name
 'host': '{address}',
 'port': 5671,
 'transport': 'tls',
 'reconnect': true,
 'idle_time_out': 8000,
 //userName assembling method
 'username': 'accessKey=${yourAccessKey}|timestamp=' + timestamp + '|',
 //accessCode
 'password': '${yourAccessCode}',
 'saslMechannisms': 'PLAIN',
 'rejectUnauthorized': false,
 'hostname': 'default',
});

// Create a Receiver connection. You can use DefaultQueue.
var receiver = connection.open_receiver('${yourQueue}');

// Callback function for receiving messages pushed from the cloud
container.on('message', function (context) {
 var msg = context.message;
 var content = msg.body;
 console.log(content);
 // Send an ACK message. Note that the callback function should not contain time-consuming logic.
 context.delivery.accept();
 });

2.10.3.5 C# SDK Access Example
This topic describes how to connect an AMQP.Net Lite client to IoTDA and receive
subscribed messages from the platform.

Development Environment Requirements
.NET Framework 4.6 or later has been installed.

Obtaining the Java SDK
1. Right-click the project directory and choose Manage NuGet Packages.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

2. In the NuGet manager, search for AmqpNetLite and install the v2.4.3 version.

Sample Code
For details about the parameters in the demo, see AMQP Client Access.

using Amqp;
using Amqp.Framing;
using Amqp.Sasl;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace AmqpDemo
{
 class Program
 {
 /// <summary>
 /// Access domain name. For details, see "AMQP Client Access".
 /// </summary>
 static string Host = "${Host}";

 /// <summary>
 /// Port
 /// </summary>
 static int Port = 5671;

 /// <summary>
 /// Access key
 /// </summary>
 static string AccessKey = "${YourAccessKey}";

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

 /// <summary>
 /// Access code
 /// </summary>
 static string AccessCode = "${yourAccessCode}";

 /// <summary>
 /// Queue name
 /// </summary>
 static string QueueName = "${yourQueue}";

 static Connection connection;

 static Session session;

 static ReceiverLink receiverLink;

 static DateTime lastConnectTime = DateTime.Now;

 static void Main(string[] args)
 {
 try
 {
 var connection = CreateConnection();
 // Add a connection exception callback.
 connection.AddClosedCallback(ConnectionClosed);

 // Create a session.
 var session = new Session(connection);

 // Create a receiver link.
 var receiver = new ReceiverLink(session, "receiverName", QueueName);

 // Receive a message.
 ReceiveMessage(receiver);
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }

 // Press Enter to exit the program.
 Console.ReadLine();

 ShutDown();
 }

 /// <summary>
 /// Create a connection.
 /// </summary>
 /// <returns>Connection</returns>
 static Connection CreateConnection()
 {
 lastConnectTime = DateTime.Now;
 long timestamp = new DateTimeOffset(DateTime.UtcNow).ToUnixTimeMilliseconds();
 string userName = "accessKey=" + AccessKey + "|timestamp=" + timestamp;
 Address address = new Address(Host, Port, userName, AccessCode);
 ConnectionFactory factory = new ConnectionFactory();
 factory.SASL.Profile = SaslProfile.External;
 // Trust the server and skip certificate verification.
 factory.SSL.RemoteCertificateValidationCallback = (sender, certificate, chain, sslPolicyError) =>
{ return true; };
 factory.AMQP.IdleTimeout = 8000;
 factory.AMQP.MaxFrameSize = 8 * 1024;
 factory.AMQP.HostName = "default";
 var connection = factory.CreateAsync(address).Result;
 return connection;
 }

 static void ReceiveMessage(ReceiverLink receiver)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

 {
 receiver.Start(20, (link, message) =>
 {
 // Process the message in the thread pool to prevent the thread that pulls the message from
being blocked.
 ThreadPool.QueueUserWorkItem((obj) => ProcessMessage(obj), message);
 // Return an ACK message.
 link.Accept(message);
 });
 }

 static void ProcessMessage(Object obj)
 {
 if (obj is Message message)
 {
 string body = message.Body.ToString();
 Console.WriteLine("receive message, body=" + body);
 }
 }

 static void ConnectionClosed(IAmqpObject amqpObject, Error e)
 {
 // Reconnection is performed every 15 seconds.
 while (DateTime.Now.CompareTo(lastConnectTime.AddSeconds(15)) < 0)
 {
 Thread.Sleep(1000);
 }
 ShutDown();

 var connection = CreateConnection();
 // Add a connection exception callback.
 connection.AddClosedCallback(ConnectionClosed);

 // Create a session.
 var session = new Session(connection);

 // Create a receiver link.
 var receiver = new ReceiverLink(session, "receiverName", QueueName);

 // Receive a message.
 ReceiveMessage(receiver);
 }

 static void ShutDown()
 {
 if (receiverLink != null)
 {
 try
 {
 receiverLink.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("close receiverLink error, exception =" + e);
 }

 }
 if (session != null)
 {
 try
 {
 session.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("close session error, exception =" + e);
 }

 }

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

 if (connection != null)
 {
 try
 {
 connection.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("close connection error, exception =" + e);
 }

 }
 }
 }
}

2.10.4 HTTP/HTTPS Subscription/Push

Overview

Subscription: By creating a subscription task on the IoTDA console, you can
obtain changed device service details (such as device lifecycle management, device
data reporting, device message status, and device status) and management details
(software/firmware upgrade status and result) from IoTDA. The URL of the
application, also called the callback URL, must be specified during subscription.

Push: After a subscription is successful, IoTDA pushes the corresponding change to
a specified URL based on the type of data subscribed. If an application does not
subscribe to a specific type of data notification, IoTDA does not push the data to
the application even if the data has changed. IoTDA pushes data, in JSON format,
using HTTP or HTTPS. HTTPS is an encrypted transmission protocol that requires
authentication and is more secure. Therefore, HTTPS is recommended.

Figure 2-92 HTTP/HTTPS subscription/push

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

IoTDA verifies the application when HTTPS is used to push messages to the
application. The CA certificate provided by the application must be loaded to
IoTDA.

NO TE

You can during commissioning. For security reasons, you are advised to replace the
commissioning certificate with a commercial certificate during commercial use.

Push mechanism: After receiving a push message from IoTDA, the application
returns a 200 OK message. If the application does not respond within 15 seconds
or returns a non-200 code (such as 500, 501, 502, 503, or 504), the message push
fails. If the platform fails to push the message for 10 consecutive times, IoTDA
adds the host address of the subscription URL to the blacklist and stops pushing
the message to the host address. After 5 minutes, IoTDA removes the host address
from the blacklist, and tries to push the message again. If the host address is still
invalid, the platform will add it to the blacklist again after 10 consecutive failed
pushes. If the host address is found valid, the normal push is restored.

Subscribing to Data

After connecting to IoTDA, an application calls an API to subscribe to data.

● For details on how to configure HTTP or HTTPS subscriptions on the console,
see Configuring HTTP/HTTPS Subscription and Loading the CA Certificate.

Format of Pushed Data

After the data subscription is successful, IoTDA pushes the data to the application.

NO TE

In the HTTP message header, the value of Content-Type is application/json, and the
character set is UTF-8.

Loading the CA Certificate

If HTTPS is used, you must load the push certificate by following the instructions
provided in this section, and then create a subscription task on the console by
referring to Configuring HTTP/HTTPS Subscription.

● If the application cancels the subscription and then re-subscribes the data
again (with the URL unchanged), the CA certificate must be selected again on
IoTDA.

● If a subscription type (URL) is added, you must load the CA certificate
corresponding to the URL to IoTDA. Even if the CA certificate used by the new
URL is the same as that used by the original URL, the CA certificate must be
selected again.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Server Certificate. Click Upload
Certificate in the upper right corner, configure parameters based on the following
table, and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

Parameter Description

Certificate
Name

Used to distinguish different certificates and can be customized.

CA
Certificate

A CA certificate from the application can be applied for in advance.
NOTE

You can create a commissioning certificate during commissioning. For
security reasons, you are advised to replace the commissioning certificate
with a commercial certificate during commercial use.

Step 3 In the navigation pane, choose Rules > Server Certificate, locate the target
certificate, and click to obtain the certificate ID, which is used as a parameter
in the API for creating a rule action.

Figure 2-93 Server certificates

----End

Creating a Commissioning Certificate

A commissioning certificate, or a self-signed certificate, is used for authentication
when the client accesses the server through HTTPS. When IoTDA uses HTTPS to
push data to an application, IoTDA authenticates the application validity. This
section uses the Windows operating system as an example to describe how to use
OpenSSL to make a commissioning certificate. The generated certificate is in PEM
format and the suffix is .cer.

The following table lists common certificate storage formats.

Storage
Format

Description

DER Binary code. The suffix is .der, .cer, or .crt.

PEM Base64 code. The suffix is .pem, .cer, or .crt.

JKS Java certificate storage format. The suffix is .jks.

NO TE

The commissioning certificate is used only for commissioning. During commercial use, you
must apply for certificates from a trusted CA. Otherwise, security risks may occur.

Procedure

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

Step 1 Download and install OpenSSL.

Step 2 Open the CLI as user admin.

Step 3 Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

Step 4 Generate the private key file ca_private.key of the CA root certificate.
openssl genrsa -passout pass:****** -aes256 -out ca_private.key 2048

● aes256: cryptographic algorithm
● passout pass: private key password
● 2048: key length

Step 5 Use the private key file of the CA root certificate to generate the ca.csr file to be
used in 6.
openssl req -passin pass:****** -new -key ca_private.key -out ca.csr -subj "/C=CN/ST=GD/L=SZ/O=***/OU=IoT/
CN=CA"

Modify the following information based on the site requirements:

● C: country, for example, CN
● ST: region, for example, GD
● L: city, for example, SZ
● O: organization.
● OU: organization unit, for example, IoT
● CN: common name (the organization name of the CA), for example, CA

Step 6 Create the CA root certificate ca.cer.
openssl x509 -req -passin pass:****** -in ca.csr -out ca.cer -signkey ca_private.key -CAcreateserial -days 3650

Modify the following information based on the site requirements:

● passin pass: The value must be the same as the private key password set in 4.
● days: validity period of the certificate.

Step 7 Generate the private key file for the application.
openssl genrsa -passout pass:****** -aes256 -out server_private.key 2048

Step 8 Generate the .csr file for the application.
openssl req -passin pass:****** -new -key server_private.key -out server.csr -subj "/C=CN/ST=GD/L=SZ/O=***/
OU=IoT/CN=appserver.iot.com"

Modify the following information based on the site requirements:

● C: country, for example, CN
● ST: region, for example, GD
● L: city, for example, SZ
● O: organization.
● OU: organization unit, for example, IoT
● CN: common name. Enter the domain name or IP address of the application.

Step 9 Use the CA private key file ca_private.key to sign the file server.csr and generate
the server certificate file server.cer.
openssl x509 -req -passin pass:****** -in server.csr -out server.cer -sha256 -CA ca.cer -CAkey ca_private.key -
CAserial ca.srl -CAcreateserial -days 3650

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

https://slproweb.com/products/Win32OpenSSL.html

Step 10 (Optional) If you need a .crt or .pem certificate, proceed this step. The following
uses the conversion from server.cer to server.crt as an example. To convert the
ca.cer certificate, replace server in the command with ca.
openssl x509 -inform PEM -in server.cer -out server.crt

Step 11 In the bin folder of the OpenSSL installation directory, obtain the CA certificate
(ca.cer/ca.crt/ca.pem), application server certificate (server.cer/server.crt/
server.pem), and private key file (server_private.key). The CA certificate is loaded
to IoTDA, and the application certificate and private key file are loaded to the
application.

----End

Configuring HTTP/HTTPS Subscription

This section describes how to configure HTTP or HTTPS subscription on the IoTDA
console.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Parameter Description

Rule Name Name of a rule to be created.

Description Description of the rule.

Data Source ● Device property: A property value reported by a device in a
resource space will be forwarded.

● Device message: A message reported by a device in a
resource space will be forwarded.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded.

● Device status: The status change of a directly connected
device in a resource space will be forwarded.

● Device event: Only events you defined in the product will be
forwarded.

● Batch task: The batch task status will be forwarded.
● Product: Product information, such as product addition,

deletion, and update, will be forwarded.
● Device: Device information, such as device addition, deletion,

and update, will be forwarded.
● Device alarm: Device alarm information, such as device

alarm generation and clearance, will be forwarded.
● Asynchronous command status of the device: The

command status change of the device will be forwarded.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

Parameter Description

Trigger After the data source is selected, the platform automatically
matches the trigger event.

Resource
Space

You can select a single resource space or all resource spaces.

SQL Filter
Statements

You can edit the SQL statements for processing message data
and set the data filtering statements.
Click Edit SQL to edit the SQL statements for processing
message fields.
For details, see SQL Statements.

Step 4 Set the forwarding target.

Click Add, select Third-party application (HTTP push), set parameters by
referring to Table 2-19, and click OK.

Table 2-19 Setting the forwarding target

Parameter Description

Forwarding
Target

Select Third-party application (HTTP push).

Push URL URL used by IoTDA to push messages to an application.
For example, if the push URL is https://10.10.10.10:8443/
example/,
the domain name/IP address and port number for Loading
the CA Certificate are 10.10.10.10:8443.
● If the push URL uses HTTP, the CA certificate is not

required.
● If the push URL uses HTTPS, upload the CA certificate.

For details about how to upload a certificate, see
Loading the CA Certificate.

Encryption Whether to enable the certificate to encrypt data. This
parameter is enabled by default.
NOTICE

By default, HTTPS authentication is used. IoTDA also supports HTTP
non-authentication mode, which may cause data leakage because it
does not support transport layer encryption. IoTDA does not make
any guarantee or assume any liability for your device data.

Encryption
Certificate

Select the server certificate uploaded in Loading the CA
Certificate.

Step 5 Enable a rule.

After the rule is configured, click Enable Rule to start data forwarding.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

2.11 IoTEdge

2.11.1 Node Management

2.11.1.1 Registering an Edge Node

IoTEdge provides basic edge management functions required for the IoT industry.

Prerequisites

Before the registration, check the host software and hardware configuration, such
as the disk, memory, and Docker version. In addition, user root is required to run
installation commands.

Careful checks prevent installation failures or service unavailability after the
installation.

Registering a Node

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Nodes in the left navigation pane. On the page displayed, click
Register Node in the upper right corner.

Step 3 Configure node specifications by referring to Table 2-20. Agree to the Cloud
Service Level Agreement and click Next.

Table 2-20 Configuring node parameters

Parameter Description

Node Type Professional edition

Node
Name

Custom the name of an edge node to register. Enter 1 to 64
characters. Only letters, numbers, hyphens (-), and underscores
(_) are allowed.

Gateway
Type

other

Node ID (Optional) Set this parameter as required. The value can contain 1
to 64 characters, including letters, digits, hyphens (-), and
underscores (_).
NOTE

Customize an edge node ID. If this parameter is not specified, the edge
node ID will be generated by default.

Verification
Code

(Optional) Enter a custom verification code, which is used as a
credential for the communication with the cloud when the edge
software installation command is executed.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Parameter Description

Bind IoTDA Select the resource space to which the node belongs.

Resource
Space

Select the default resource space or create a resource space, for
example, edge.

Authenticat
ion Mode

Secret: generated by default.
X.509 certificate: For details, see MQTT X.509 Certificate Access.

Fingerprint (Optional) Enter the string generated by the certificate file. Enter
a 40-digit or 64-digit hexadecimal string.

Local Path If fingerprint authentication is used, enter the storage paths of the
certificate and key files on the device. The value can contain only
letters, digits, underscores (_), and slashes (/), and must start with
a slash (/) and end with .pem or .crt.

Step 4 Configure node data by referring to Table 2-21 and click Create Now.

Table 2-21 Configuring node data

Parameter Description

Data
Storage
Path

Retain the default value (the storage path can be changed).

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

Parameter Description

Monitoring
and O&M

The monitoring O&M tool is selected by default.

$edge_oma
gent

It performs remote monitoring and O&M on edge nodes. It
reports data (such as logs and CPU indicators) and provides
remote SSH connection and file upload/download.

Log
Settings

System Logs: logs generated by system applications deployed on
edge nodes.
Application Logs: logs generated by custom applications
deployed on edge nodes.
● Cloud Log: On indicates that logs are uploaded to the cloud,

and Off indicates that logs are not uploaded.
● Log File Size: maximum size of a log file, in MB. The default

value is 50. The value ranges from 10 to 1000. If a log file
reaches the specified size, the system dumps the log file into
the specified directory.

● Log Rotation Frequency: frequency at which logs are dumped
into the specified directory. The value can be Daily, Weekly,
Monthly, or Yearly. If a log file reaches the frequency, the
system dumps the log file into the specified directory. Log files
will be dumped when either Log File Size or Log Rotation
Frequency is reached.

● Log Rotation Count: maximum number of logs being retained.
The default value is 5. The value ranges from 1 to 10. Once this
number is reached, when new log files are dumped in, old log
files will be deleted on a FIFO basis.

Offline
Cache
Configurati
on

You can cache data reported by offline nodes and define the
cache period (which can be set to permanent storage), cache size,
and reporting priority.

Reliability
Configurati
on

Options are Medium and High. Medium indicates that data is
directly discarded after the threshold for edge traffic control is
reached, which is used for common scenarios. High indicates that
data is not discarded after the threshold is reached, but the
application sending speed is controlled within the threshold and
the latency increases. (Note: High requires a custom synchronous
sending application.)

Step 5 In the dialog box displayed, select the supported architecture and enter the
installation directory, which is used to store logs. You can go back to the node list
or continue to create a node.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

NO TE

1. Check the ip_forward value in the /proc file system.
cat /proc/sys/net/ipv4/ip_forward

If the value is 0, add the IP forwarding rule configuration.
2. Modify the /etc/sysctl.conf configuration file and set net.ipv4.ip_forward to

1.
If the configuration file does not contain the net.ipv4.ip_forward parameter,
add net.ipv4.ip_forward = 1.
vim /etc/sysctl.conf

Press i to enter the editing mode. After the modification is complete, press Esc
to exit the editing mode. Then, press Shift+;, enter wq, and press Enter to
save the modification and exit.

3. Reload the file.
sysctl -p

4. Check whether ports 7882, 7883, and 8943 are enabled.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

2.11.1.2 Installing an Edge Node

Prerequisites
Edge software has the following requirements on hardware, operating
environment, and network:

Hardware requirements

Hard
ware

Requirement

OS ● x86_64 architecture
EulerOS 2.3
EulerOS 2.9
Ubuntu 16.04
Ubuntu 18.04
CentOS 7.6

● Arm64
EulerOS 2.8
EulerOS 2.9
Ubuntu 18.04

CPU ≥ 1 vCPU

RAM ≥ 256 MB (100 TPS for 1U1G; 1,000 TPS for 8U8G)

Disk ≥ 2 GB

GPU
(optio
nal)

The GPU models on the same edge node must be the same.

Operating environment requirements

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

Depe
ndenc
y
Item

Specifications

Docke
r

The Docker version must be later than 17.06. Docker 18.06.3 is
recommended.
(However, do not use Docker 18.09.0 because it has a serious bug. For
details, see https://github.com/docker/for-linux/issues/543. If this
version has been used, upgrade it as soon as possible. This issue has
been resolved in Docker 18.09.0.60 used by Atlas 500 AI edge stations.)
For details about how to install Docker, see https://docs.docker.com/
install/overview/.
You can install open-source Docker Engine - Community (Docker CE) or
paid Docker Engine - Enterprise (Docker EE). For more details about
Docker EE, see the official Docker documentation at https://
docs.docker.com/ee/supported-platforms/.
NOTE

After Docker is installed, configure the Docker process to start upon host startup.
This configuration prevents system exceptions that occur when the Docker
process does not start together with the host.

wget The version must be 1.10 or later.

opens
sl

The version must be 1.0.2 or later.

Port Edge nodes need to use the following ports. Ensure that these ports
function properly.
● 7882: provides southbound MQTT device access.
● 7883: provides southbound MQTTS device access.
● 8943: HTTP port

NTP
(optio
nal)

The NTP server must be reliable, and the time difference must be less
than or equal to 5 seconds.

Network requirements

The VM where the edge node is installed and IoTDA are in the same VPC.

Step 1 Configure an EIP address for the VM where the edge node is installed.

Step 2 Obtain the IoTDA private repository address.

1. Log in to the IoTDA console. In the navigation pane, choose IoTEdge >
Applications. Select Mandatory from the drop-down list for filtering and
click the $edge_agent application.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

https://github.com/docker/for-linux/issues/543
https://docs.docker.com/install/overview/
https://docs.docker.com/install/overview/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/

Figure 2-94 Application management

2. Select the target version and view the version information on the right.

Figure 2-95 Service version

3. The address in the red box is {Private repository address}.

Figure 2-96 Checking the private repository address

Step 3 Log in to the VM where the edge node is to be installed, modify the Docker
configuration file /etc/docker/daemon.json, find the insecure-registries
configuration, and add {Private repository address} obtained in the previous step.

For example:
vim /etc/docker/daemon.json
{

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

"insecure-registries":["{Private repository address}"]
}

If the /etc/docker/daemon.json file does not exist, run the following command to
create the file:

touch /etc/docker/daemon.json

Copy the following content to the file and save the file:

{
 "insecure-registries": ["{Private repository address}"],
 "default-ulimits": {
 "nofile": {
 "Name": "nofile",
 "Hard": 1000000,
 "Soft": 1000000
 }
 },
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "10m",
 "max-file": "5"
 }
}

Step 4 Run the following commands to restart Docker:
systemctl daemon-reload
systemctl restart docker.service

----End

Installing a Node

Step 1 Choose IoTEdge > Nodes. In the edge node list, locate the node to be installed
and click Install on the right.

Figure 2-97 Installing a node

Step 2 Select the supported architecture, click to copy the installation command, use
the SSH tool to log in to the background system of the edge node, and run the
installation command.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

Figure 2-98 Prompt

Figure 2-99 Running the installation command

Step 3 Click OK and wait until the status of the edge node changes to Online. This status
indicates that the node is installed.

Step 4 Click the node name to view its details. For details, see Overview.

----End

2.11.1.3 Managing an Edge Node

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

2.11.1.3.1 Overview

Choose IoTEdge > Nodes and click the edge node name to go to the node details
page.

Figure 2-100 Node details

Table 2-22 Node statuses

Status Description

Uninstall
ed

The edge node is not installed.

Installed The node is installed, but the edge service is not running.

Online The edge service is running properly.

Offline The edge node is unavailable, and the status of modules and
devices under the edge node is not updated.

Deleting The edge node is being deleted.

Table 2-23 Overview

Parameter Description

Node Overview The following information is displayed:
● Number of connected edge devices
● Number of application modules (running/abnormal)
● CPU, memory, and hard disk information

Basic
Information

The following information is displayed:
● Basic information
● Node ID
● Billing mode
● Creation time

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

Parameter Description

Offline Cache
Configuration

The following information is displayed:
● Reporting priority
● Storage period
● Cache size

Specifications The following information is displayed:
● Type of the edge node
● Authentication mode

Edge Software The following information is displayed:
● Version
● Update time
● Node architecture
● Container runtime version

Reliability
Configuration

The reliability level is displayed.

Node Details The following information is displayed:
● Host Name: Linux host name of the edge node
● Network (NIC:IP): NIC and IP address list of the edge

node
● OS: Linux OS name of the edge node
● Specifications: the number of CPU cores and memory size

of the edge node
● AI Accelerator Card

Monitoring Resources
Prerequisites

To use the resource monitoring function, deploy the $edge_omagent application.

For details on how to deploy edge applications, see Deploying an Application.

Procedure

Step 1 Choose IoTEdge > Nodes and click the edge node name to go to the node details
page.

Step 2 In the upper right corner of the page, the CPU, memory, and disk information of
the node is displayed.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

Figure 2-101 Basic Information of a node

----End

2.11.1.3.2 Modules

Choose IoTEdge > Nodes, click the edge node name to go to the node details
page, and choose Application Module on the left to deploy an edge application
and configure data forwarding.

● For details on how to deploy edge applications, see Deploying an
Application.

● For details on how to configure data forwarding, see Configuring Data
Forwarding.

Figure 2-102 Deploying an edge application

Configuring Data Forwarding
You can configure the source and destination of data forwarding as required so
that messages can be forwarded to the corresponding endpoint based on the
specified path, improving data security.

By default, a data forwarding rule forwards data from a device to IoTDA. Pay
attention to the following points when configuring data forwarding:

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

CA UTION

● Only applications that are configured with input and output endpoints can use
data forwarding.

● After a module is deleted or upgraded, data forwarding may fail. Adjust the
rules in a timely manner.

The procedure is as follows:

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Nodes in the left navigation pane.

Step 3 Click the target edge node name to access its details page.

Step 4 Choose Application Module and click Configure Data Forwarding.

Step 5 Click Configure Rule and then Add Rule to add a data cleansing rule based on
Table 2-24.

Figure 2-103 Configuring data forwarding

Table 2-24 Parameters for adding a data forwarding rule

Parameter Description

Rule Name Enter the name of a data forwarding rule.

Source Output endpoint of the module that sends messages and the
application to which the module belongs.

Target Input endpoint of the module that receives messages and the
application to which the module belongs.

Delete You can delete a data forwarding rule that is no longer
required. After a rule is deleted, the system will not forward
messages destined for the specified resource of the source
endpoint.

Step 6 Click Save.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

2.11.1.3.3 OT Data Collection Configuration

Prerequisites
To configure OT data collection, create a product on IoTDA. A product is a
collection of devices with the same capabilities or features.

After creating a product, add the corresponding edge device to the edge node to
receive the OT device data collected by the edge node.

Collecting OT Data using IoTEdge
IoTEdge provides simple configuration on the console for OT data collection (from
DCS, PLC, and OPC UA).

The following uses OPC UA as an example to demonstrate how to configure data
collection. Before configuring data collection, deploy an application. For details,
see Deploying an Application.

Step 1 Choose IoTEdge > Applications, click the Driver Applications tab, and click
Template Management. On the displayed page, import a preset general template
or upload a data collection template.

Figure 2-104 Adding a data collection template

The template file is in JSON format. The example and field description are as
follows:

Example

{
 "tpl_id": "sys_general_opcua",
 "name": "OPC UA general data collection template",
 "description": "OPC UA general data collection template",
 "datasource_meta": {
 "config_tabs": [{
 "key": "connection_info",
 "name": "Connection information",
 "description": "Connection information",
 "config_items": [{
 "key": "endpoint",
 "name": "Service endpoint",
 "description": "Complete service URL",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 128,
 "example": "opc.tcp://127.0.0.1:53530/OPCUA"

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

 }, {
 "key": "username",
 "name": "Username",
 "description": "OPC UA server authentication username",
 "data_type": "string",
 "required": false,
 "crypted": false,
 "max_length": 128,
 "example": "admin"
 }, {
 "key": "password",
 "name": "Password",
 "description": "OPC UA server authentication password",
 "data_type": "string",
 "required": false,
 "crypted": true,
 "max_length": 512,
 "example": "******"
 }]
 }, {
 "key": "collection_paras",
 "name": "Additional parameters for connection",
 "description": "Additional parameters for connection",
 "config_items": [{
 "key": "default_cycle",
 "name": "Collection period",
 "description": "Collection period",
 "data_type": "int",
 "required": true,
 "crypted": false,
 "max_length": 65535,
 "example": 10000
 }]

 }],
 "default_values": {
 "drivername": "OPCUA"
 }
 },
 "point_meta": {
 "config_items": [{
 "key": "address",
 "name": "Point address",
 "description": "Collection point address",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 256,
 "example": "ns=2;s=Root/Motor/Voltage"
 }, {
 "key": "data_type",
 "name": "Data type of the point value",
 "description": "Data type of the point address",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 128,
 "example": "int,decimal"
 }, {
 "key": "cycle",
 "name": "Point collection period",
 "description": "Point collection period",
 "data_type": "int",
 "required": true,
 "crypted": false,
 "max_length": 65535,
 "example": 10000
 }]

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

 }
}

Table 2-25 OT data collection template

Key Type Description

tpl_id String Data collection template
ID, which is unique for a
tenant.
Pattern: '^[a-zA-Z0-9_-]*
$'
Value length: 1–64
characters

name String Data source template
name (English).
Value length: 1–64
characters

description String Description of the data
source template. The
value can contain 0 to
128 characters.

datasource_meta Object Data source
configuration metadata.

point_meta Object Point collection
configuration metadata.

Table 2-26 datasource_meta

Key Type Description

config_tabs Array Data source
configuration table list.

default_values Object Default data source
value, which is usually
used to describe the
default driver protocol.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

Table 2-27 config_tabs

Key Type Description

key String Key of the data source
configuration table.
Options include
connection_info and
collection_paras.

name String Name of the data source
configuration table. The
value can contain 1 to 64
characters.

description String Description. The value
can contain 0 to 255
characters.

config_items Array Configuration item list.

Table 2-28 config_items

Key Type Description

key String Configuration item key.
The value can contain 1
to 32 characters.

name String Default item name. The
value can contain 1 to 64
characters.

description String Configuration item
description. The value
can contain 0 to 128
characters.

data_type String Configuration item type.
The value can be short,
ushort, int, int64, uint,
long, ulong, float,
double, bool, string,
object, and decimal.

required Boolean Whether a configuration
item is mandatory.

crypted Boolean Whether a configuration
item is encrypted.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

Key Type Description

max_length Integer Maximum length of an
input string. This
parameter is valid only
when data_type is set to
string.

example String Example of a
configuration item. The
value is displayed in gray
in the text box on the
GUI. The value can
contain 0 to 256
characters.

Table 2-29 default_values

Key Type Description

drivername String Default driver protocol,
for example, OPC UA.

Step 2 In the navigation pane on the left, choose IoTEdge > Nodes.

Figure 2-105 Node management

In the navigation pane on the left, choose Data Configuration and create a data
collection connection.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

Figure 2-106 Data collection configuration

Specify parameters of the data collection connection and click OK. The
configuration is only saved on the platform and is not delivered to the edge.
● Channel ID: opcua
● Channel Name: opcua (custom)
● Driver Module: user_opcua
● Service Endpoint: opc.tcp://121.36.62.255:53530/OPCUA/SimulationServer
● Username: same as that of the OPC UA simulator
● Password: same as that of the OPC UA simulator
● Collection Period: 1,000 ms

NO TE

Set service endpoint to the connection address provided by the OPC UA server.
Common OPC UA servers include SCADA and Kepware.

Step 3 In the navigation pane on the left, choose Data Configuration, and select the
target data collection connection.

Click the button for adding a point, enter configuration information by referring to
Table 2-30, and click OK to add a point mapping.

Figure 2-107 Adding a point mapping

Table 2-30 Adding a point mapping

Basic information

Point ID Unique ID of a point.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

Basic information

Point Name Set this parameter according to the rules.

Device ID ID of the device added on the edge device tab page.

Data Type Currently, the following data
types are supported:
int
uint (unsigned integer)
int64 (64-bit integer)
short (short integer)
ushort (unsigned short
integer)
long (long integer)
ulong (unsigned long
integer)
bool (Boolean)
float (single-precision
floating point)
double (double-precision
floating point)
decimal
string
object

Value range:
–2147483648 to 2147483647
0 to 4294967295
–2147483648 to 2147483647
–32768 to 32767
0 to 65535
–2147483648 to 2147483647
0 to 4294967295
0/1
–3.4 x 10^38 to 3.4 x 10^38
–1.7 x 10^-308 to 1.7 x 10^308
–1.7 x 10^-308 to 1.7 x 10^308

Device
Property

A device property is in the format of service_id/property_name
in the product model.

Collection configuration

Point Address Enter the actual point addresses of the OT device and system:
ns=3;i=1001 and ns=3;i=1002.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

Basic information

Data Type Currently, the following data
types are supported:
int
uint (unsigned integer)
int64 (64-bit integer)
short (short integer)
ushort (unsigned short
integer)
long (long integer)
ulong (unsigned long
integer)
bool (Boolean)
float (single-precision
floating point)
double (double-precision
floating point)
decimal
string
object

Value range:
–2147483648 to 2147483647
0 to 4294967295
–2147483648 to 2147483647
–32768 to 32767
0 to 65535
–2147483648 to 2147483647
0 to 4294967295
0/1
–3.4 x 10^38 to 3.4 x 10^38
–1.7 x 10^-308 to 1.7 x 10^308
–1.7 x 10^-308 to 1.7 x 10^308

Point
Collection
Period

1,000 ms

CA UTION

Do not configure the same property for the same device for different points.

Step 4 Deliver the point configuration to the edge.

Figure 2-108 Delivering configuration

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

NO TE

1. After modifying point information, you need to deliver the configuration again for it to
take effect.

2. The module status is determined by the connection status. After the data collection
connection is enabled, the module is displayed as running.

2.11.1.3.4 IT Data Collection Configuration

Choose IoTEdge > Nodes, click the edge node name to go to the node details
page, and choose Data Configuration on the left to manage configuration items
of third-party applications.

Collecting IT Data using IoTEdge
IoTEdge supports both IoT device data collection and subsystem data collection,
implementing efficient collection and precise delivery of diverse subsystem data.

After the Enterprise Resource Planning (ERP) and Manufacturing Execution System
(MES) subsystems are connected using IoTEdge, you can configure the preset
integration template (ERP-MES) to efficiently collect data from the ERP
subsystem. Processed data can be synchronized to the MES subsystem for
subsequent management.

CA UTION

● The ERP and MES edge data collection template connects only to a simulated
IT system. You need to configure the templates on the onsite IT system.

● A driver application is bound to a data collection template. You need to add a
driver application developed for the template based on the IT system type.

Step 1 Choose IoTEdge > Applications, and click the Driver Applications tab. Access the
data collection template management page, and import a common data
collection template. Customize a data collection template based on the ERP and
MES data collection template, and upload the custom template.

Figure 2-109 Adding a data collection template

Example of an IT data collection template:

{
 "tpl_id": "sys_general_erp_mes",
 "name": "General data collection template for ERP and MES integration",

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

 "description": "General data collection template for ERP and MES integration",
 "datasource_meta":
 {
 "config_tabs": [
 {
 "key": "connection_info",
 "name": "Connection information",
 "config_items": [
 {
 "key": "erp_url",
 "name": "erp_url",
 "description": "Address",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 200,
 "example": ""
 },
 {
 "key": "erp_username",
 "name": "erp_username",
 "description": "Username",
 "data_type": "string",
 "required": false,
 "crypted": false,
 "max_length": 200,
 "example": ""
 },
 {
 "key": "erp_password",
 "name": "erp_password",
 "description": "Password",
 "data_type": "string",
 "required": false,
 "crypted": true,
 "max_length": 200,
 "example": ""
 },
 {
 "key": "mes_url",
 "name": "mes_url",
 "description": "Address",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 200,
 "example": ""
 },
 {
 "key": "mes_username",
 "name": "mes_username",
 "description": "Username",
 "data_type": "string",
 "required": false,
 "crypted": false,
 "max_length": 200,
 "example": ""
 },
 {
 "key": "mes_password",
 "name": "mes_password",
 "description": "Password",
 "data_type": "string",
 "required": false,
 "crypted": true,
 "max_length": 200,
 "example": ""
 }]
 },

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

 {
 "key": "collection_paras",
 "name": "Additional parameters for connection",
 "description": "Additional parameters for connection",
 "config_items": [
 {
 "key": "default_cycle",
 "name": "Collection task",
 "description": "Collection task",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 65535,
 "example": ""
 }]
 }],
 "default_values":
 {
 "transformScriptContent": "/**\n * @description Default functions executed by the conversion node
\n",
 "outputScriptContent": "importClass(com.bsi.utils.HttpUtils);}"
 }
 },
 "point_meta":
 {
 "property_mapping_enabled": false,
 "point_predefined": true,
 "config_items": [
 {
 "key": "period",
 "name": "Collection period",
 "description": "Collection period",
 "data_type": "int",
 "required": true,
 "crypted": false,
 "max_length": 65535,
 "example": 10000
 },
 {
 "key": "input_path",
 "name": "Input path",
 "description": "Input path",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 65535,
 "example": 10000
 },
 {
 "key": "output_path",
 "name": "Output path",
 "description": "Output path",
 "data_type": "string",
 "required": true,
 "crypted": false,
 "max_length": 65535,
 "example": 10000
 }],
 "default_points": [
 {
 "point_id": "material_sync",
 "name": "Material synchronization",
 "data_type": "object",
 "collection_config":
 {
 "period": 5,
 "input_path": "/workingPlan20",
 "output_path": "/opendata/v1/erp/production/plan",
 "transformScript": "transformScriptContent",

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

 "inputScript": "inputScriptContent",
 "outputScript": "outputScriptContent"
 }
 },
 {
 "point_id": "order_sync",
 "name": "Order synchronization",
 "data_type": "object",
 "collection_config":
 {
 "period": 5,
 "input_path": "/workingPlan20",
 "output_path": "/opendata/v1/erp/production/plan",
 "transformScript": "transformScriptContent",
 "inputScript": "inputScriptContent",
 "outputScript": "outputScriptContent"
 }
 }]
 }
}

Table 2-31 IT data collection template

Key Type Description

tpl_id String Data collection template
ID, which is unique for a
tenant.
Pattern: '^[a-zA-Z0-9_-]*
$'
Value length: 1–64
characters

name String Data source template
name (English).
Value length: 1–64
characters

description String Description of the data
source template. The
value can contain 0 to
128 characters.

datasource_meta Object Data source
configuration metadata.

point_meta Object Scenario collection
configuration metadata.

Table 2-32 datasource_meta

Key Type Description

config_tabs Array Data source
configuration table list.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Key Type Description

default_values Object Default data source
value, which is usually
used to describe the
default driver protocol.

Table 2-33 config_tabs

Key Type Description

key String Key of the data source
configuration table.
Options include
connection_info and
collection_paras.
Configure the connection
information fields of the
IT system in
connection_info.
Configure the fields of
the IT system data
collection task in
collection_paras.

name String Name of the data source
configuration table. The
value can contain 1 to 64
characters.

description String Description. The value
can contain 0 to 255
characters.

config_items Array Configuration item list,
which is generated on
the GUI for configuring
connection_info or
collection_paras.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

Table 2-34 default_values

Key Type Description

key_name String The key and value can
be customized. A
conversion script can be
configured. A JavaScript
script is used as an
example.

Table 2-35 point_meta

Key Type Description

property_mapping_enabl
ed

Boolean Whether to enable
property mapping. Set
this parameter to false
for IT data collection.

point_predefined Boolean Whether to define
points. Set this
parameter to true for IT
data collection.

config_items Array Configuration item list,
which is generated on
the GUI. It applies to all
default_points values.
Each default_point
value can be configured
separately, and the fields
with the same key in
collection_config will be
overwritten.

default_points Array List of collection task
scenarios.

Table 2-36 config_items

Key Type Description

key String Configuration item key.
The value can contain 1
to 32 characters.

name String Default item name. The
value can contain 1 to 64
characters.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Key Type Description

description String Configuration item
description. The value
can contain 0 to 128
characters.

data_type String Configuration item type.
The value can be short,
ushort, int, int64, uint,
long, ulong, float,
double, bool, string,
object, and decimal.

required Boolean Whether a configuration
item is mandatory.

crypted Boolean Whether a configuration
item is encrypted.

max_length Integer Maximum length of an
input string. This
parameter is valid only
when data_type is set to
string.

example String Example of a
configuration item. The
value is displayed in gray
in the text box on the
GUI. The value can
contain 0 to 256
characters.

Table 2-37 default_points

Key Type Description

point_id Boolean Collection scenario ID.

name Boolean Collection scenario
name.

data_type String Scenario data type. The
value is Object for IT
data collection.

collection_config Object Default configuration of
the collection scenario.

Step 2 Choose IoTEdge > Applications, click the Driver Applications tab, and click Add
Application. Set the protocol type to HTTP or JDBC based on the data collection

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

mode. If multiple modes are used, select Other. Set the function to data
collection.

Step 3 Choose IoTEdge > Applications, click the Driver Applications tab, click the
created driver application, and click the plus sign (+) to create an application
version.

Figure 2-110 Creating a driver application version

Select Container-based deployment, enter the container image path, and click
Next. Based on your IT data collection service requirements, develop driver
applications, create images, and upload the images to an image repository.

Figure 2-111 Software and deployment settings

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

Enter the runtime configuration based on the application requirements. If it is not
required, click Next.

Figure 2-112 Runtime configuration

Enter the integrated SDK version, application version, and supported architecture.
Bind the added data collection template. Enter the vendor name and click Publish
Now.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

Figure 2-113 Confirming configuration

Step 4 Go the edge node page, choose Application Module in the navigation pane, click
the Modules tab, and click Deploy Application. In the dialog box displayed, select
data collection, the created application, and application version, and click OK.

Figure 2-114 Deploying an application

Step 5 Choose Data Configuration in the navigation pane, click the Data Collection tab
to create a data collection connection. In the dialog box displayed, select the
created application module. Enter IT system information and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

Figure 2-115 Creating a data collection connection

Step 6 Enable the created data collection connection. Deliver the data collection
connection information and the collection task predefined in the data collection
template to the created application.

Figure 2-116 Delivering configuration

----End

2.11.1.3.5 Batch Task Import

Creating a Task for Adding Points in Batches

Step 1 Log in to the IoTDA console. In the navigation pane, choose IoTEdge > Nodes. On
the page displayed, click the created edge node to access its details page.

Step 2 Choose Data Configuration, click the connection channel, import points, and add
them in batches. You can use incremental import or full import. Incremental
import is to update existing points and insert new points. Full import is to delete
existing points and insert new points.

Step 3 Enter a task name, download the Excel template file, add point data, and upload
the file.

Table 2-38 Point template file description

Parameter Description

common_conf
ig.point_id

Point ID.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

Parameter Description

common_conf
ig.name

Point name.

common_conf
ig.device_id

Device ID.

common_conf
ig.property

Property path.

common_conf
ig.data_type

Data type.

collection_conf
ig.address

Point address.

collection_conf
ig.data_type

Data type of point value.

collection_conf
ig.cycle

Point collection period.

stream_config.
stream_
formula

● Formula for complex mapping. Currently, bit() and bool()
are supported. They support integers only.

● Bit splitting: For example, bit(0) indicates that only bit 0 of
the collected point value is obtained and the value is
reported as an integer. For example, if the collected point
value is 3 (its binary value is 0000 0011) and bit(0) is
configured, 1 will be reported.

● bool() is an enhanced operation of bit splitting. It converts
an integer to a Boolean value, for example, bit(0).bool().
For example, if the collected point value is 3 (its binary
value is 0000 0011) and bit(0).bool() is configured, true
will be reported.

scaling_config.
ratio

Scaling ratio.

scaling_config.
base

Baseline value.

scaling_config.
accuracy

Precision of the scaling result. -1 (default value) indicates that
all decimal places are retained. 0 indicates that only integer
places are retained. 1 indicates that only one decimal place is
retained. If this parameter is left empty, the default value is
used.

clean_config.si
lent_window

Silence time window. If no reporting condition is triggered
within this time window, the point will not be reported.

clean_config.d
eviation

Deviation. Values within this range are considered normal
fluctuations and are not reported.

validity_config
.min

Minimum point value for reporting. If a value is less than the
minimum value, an alarm is reported.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

Parameter Description

validity_config
.max

Maximum point value for reporting. If a value is greater than
the maximum value, an alarm is reported.

Step 4 The batch task is successful.

Figure 2-117 Batch tasks

NO TE

1. Up to 20 batch tasks can be created in a resource space.
2. Up to 10 batch tasks can be processed in a resource space at a time.
3. Each batch task, including batch device registration and deletion, is automatically aged

and deleted after 30 days.
4. Up to 10,000 subtasks can be added to a batch task.
5. During batch point registration, if a data source has tasks that are waiting or being

executed, new tasks cannot be created.
6. The task that is being executed cannot be deleted.
7. A scheduled batch task is executed every 5 minutes.
8. If no result is displayed in the exported Excel file but the task execution fails, the

possible cause is that the data source or node may be deleted but the task still exists.

----End

2.11.1.3.6 Child Devices

Edge Devices
Choose IoTEdge > Nodes, click the edge node name to go to the node details
page, and choose Device on the left. You can view or add edge devices, configure,
delete, and manage child devices, as well as register MQTT edge devices in
batches.

For details on device access, see Connecting a Device to an Edge Node.

Figure 2-118 Child device management

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

Table 2-39 Operations

Parameter Description

Edit Check or modify the configuration of an edge device.

Delete Delete an edge device.

Manage View details about the edge device and register a child device. For
details, see Registering a Modbus Child Device or Registering an
OPC UA Child Device.

NO TE

When creating an MQTT device under an edge node on the IoTDA platform, do not set the
module ID parameter. Otherwise, MQTT authentication fails.

Registering MQTT Edge Devices in Batches
The platform allows you to add MQTT edge devices in batches.

Step 1 Choose IoTEdge > Nodes, click your edge node, choose Device on the left, and
click the Batch Registration tab.

Step 2 Click Batch Registration, download the template file to the local host, enter
device information based on the parameter description in the file, upload the file
to the platform, and click OK. The system automatically generates a batch device
registration task. The task status will be available in about 3 minutes.

Figure 2-119 Batch registration

----End

2.11.1.3.7 Data Configuration

Step 1 Choose IoTEdge > Nodes, and click your edge node.

Step 2 Choose Data Configuration. Check the data storage path, offline cache
configuration, and log configuration of the edge node, and modify the log
configuration.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

Figure 2-120 Log settings

----End

2.11.1.3.8 Remote Maintenance

IoTEdge provides a web-based client tool to enable you to use SSH to remotely
access nodes.

Prerequisites
● The node is not in the uninstalled, upgrading, or deleting state.
● An SSH server program is installed on the remote node, and listening to port

22 is enabled.

CA UTION

● To remotely log in to a node, you must enter the correct username and
password.

● If the node status is Offline, the connection may fail to be established.
Consequently, remote maintenance is unavailable.

● Only one user can log in to the node at a time. A new login request will forcibly
log out the existing user.

● Tab switching will close the connection. If this happens, you must log in again.
● If the version of $edge_agent is later than 1-1-6, the remote SSH function is

not supported. To use the remote SSH function, deploy $edge_omagent 1-1-11
or later.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Nodes in the left navigation pane.

Step 3 Click the target edge node name to access its details page.

Step 4 Click the Remote Maintenance tab, and then click Log In.

Step 5 In the dialog box displayed, enter the username and password used for login, and
click OK.

Step 6 If the username and password are correct, the system displays a message
indicating that the remote login is successful. Expand the directory tree.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

Figure 2-121 Successful login

Figure 2-122 Expanding the directory tree

Step 7 Interact with the node.

For example:

1. Run the following command to check the system running status:
> top

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

Figure 2-123 top command output

2. Run the following command to check files and directories in the /etc
directory:
> ls

Figure 2-124 ls command output

Step 8 Upload and download a file.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

CA UTION

1. Only files can be downloaded.
2. Files can be uploaded only to folders. It indicates that files are uploaded to the

corresponding folders on the remote host.
3. The maximum size of a file to be uploaded or downloaded is 10 MB.
4. The target directory for uploading and downloading a file is restricted by the

root directory configured during node creation.

Figure 2-125 Configuring node data

5. To upload and download a file, you need to deploy $edge_omagent 1-1-11 or
later.

Right-click the target folder or file. The file upload and download options are
displayed.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Figure 2-126 Uploading and downloading a file

Step 9 Log out of the node.

Close the browser, refresh the page, click the close button in the upper right
corner, or run the exit command on the operation page to log out of the node.

----End

2.11.1.3.9 Active/Standby Configuration

Figure 2-127 Active/Standby Configuration

The active/standby configuration ensures the reliability of active node data and
the continuity of related services.

The active node executes all edge services. The standby node downloads all
images and executes only the edge_agent and edge_keepalived applications.
When the active node breaks down or the network is faulty, the active/standby

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

switchover is performed. After the original active node recovers, it does not
perform preemption.

Constraints
1. To configure the active/standby mode, the network interface cards (NICs) on

the bound gateway must be on the same network to ensure normal
heartbeat.

2. Correct iptables must be configured between the active and standby
gateways to prevent heartbeat network exceptions.

3. You are advised to check the firewall configuration. If the firewall is not
disabled, add the Virtual Router Redundancy Protocol (VRRP) bypass policy.

4. To delete the active/standby configuration, uninstall the standby server that is
installed later by running the sh /opt/IoTEdge-Installer/uninstall.sh
command. Then, delete the active/standby configuration and retain the first
installed host. If the host that is installed later is not uninstalled, deleting the
active/standby configuration will stop the application by default, affecting
node running.

5. If the NIC name is incorrect, the edge_keepalive module will be faulty. As a
result, the active and standby nodes cannot work properly.

6. Currently, the edge_keepalive upgrade will cause an active/standby
switchover. Therefore, you are not advised to upgrade it.

Prerequisites
Register and install edge nodes. For details, see Registering an Edge Node and
Installing an Edge Node.

Deploying an Application

Step 1 Click the target edge node name to access its details page.

Step 2 In the navigation pane on the left, choose Application Module, and click the
Modules tab, and click Deploy Application to deploy the $edge_keepalive
application.

Figure 2-128 Deploying an Application

● Edge Application: Select $edge_keepalive.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

● Version: Select 1-1-40-standard-x86. (Set it to the actual version in the
current environment.)

Step 3 In the navigation pane on the left, choose Application Module, click the Modules
tab to view the deployed edge application.

Figure 2-129 Checking deployed edge applications

----End

Adding the Active/Standby Configuration

Step 1 Click the target edge node name to access its details page.

Step 2 In the navigation pane on the left, choose Primary/Secondary and click Active/
Standby Configuration.

Step 3 Enter the information and click OK.

Figure 2-130 Active/Standby Configuration

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

Table 2-40 Active/Standby configuration

Parameter Description

Active NIC Name of the NIC bound to the virtual IP address on
the active node, for example, eth0 and eth1. Ensure
that the name is correct. Otherwise, the virtual IP
address will fail to be bound.

Standby NIC Name of the NIC bound to the virtual IP address on
the standby node, for example, eth0 and eth1.

Floating Virtual IP
Address

Virtual IP address for external systems. It is used for
device connection. Set it based on your service plan.

Step 4 View the IP address information. Run the ip a command to view the IP address of
the active node. If the current settings are correct, the bound virtual IP address
can be retrieved on the active node. For example, the current virtual IP address is
172.30.0.201, and the NIC bound to the active node is eth0.

Figure 2-131 Querying IP address information

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

NO TE

Run the ifconfig command to view the NIC name, as shown in the following figure.

Figure 2-132 Checking the NIC name

----End

Installing a Standby Node

Step 1 Click the target edge node name to access its details page.

Step 2 In the navigation pane on the left, choose Primary/Secondary to obtain the
command for installing the standby node.

CA UTION

The network between the bound NICs on the active and standby nodes must be
normal. Otherwise, the active and standby nodes may be abnormal.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

Figure 2-133 Obtaining the installation commands of the standby node

Step 3 Log in to the standby edge node and run the installation command.

Figure 2-134 Running the installation commands

If the following information is displayed, the standby node is installed.

Figure 2-135 Installation successful

By default, only the edge_agent and edge_keepalive modules run on the standby
node. Statuses of other modules are Created.

Figure 2-136 docker ps command output

----End

Checking the Binding Status of the Current Virtual IP Address

Check the active node. The eth0 NIC on the active node is bound to a virtual IP
address and the node is a working node.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

Figure 2-137 Checking the active node

Check the IP address list of the standby node. The eth0 NIC is not bound to a
virtual IP address.

Figure 2-138 Checking the standby node

Check the active and standby nodes on the console. The working node is ecs-
tjj-01. (The green label indicates that the node is a working node.)

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

Figure 2-139 Checking the active/standby configuration node

The active/standby configuration is completed.

Simple Test
Simulate a fault on the current working node so that heartbeat packets are not
sent to the standby node.

● Stop keepalive on the active node to simulate a breakdown.

Figure 2-140 Simulating a breakdown

After the application is stopped, check the application status. The hub status
is Created. Check the floating IP address. It is found that the virtual IP address
of the original active node has been removed.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Figure 2-141 Virtual IP address of the original primary node removed

● Check the floating IP address of the standby node and the module status.

Figure 2-142 Querying the module running status of the standby node

The floating IP address has been bound to the eth0 NIC on the standby node,
and all service modules are running properly on the original standby node.

● Check the active/standby node information on the console. The working node
has been switched to the ecs-8bc3-0003 standby node.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

Figure 2-143 Checking the active/standby configuration node

The simple test of the active/standby switchover is completed.

2.11.1.3.10 Deleting an Edge Node

Delete an edge node if it is no longer needed.

Procedure

Step 1 Choose IoTEdge > Nodes in the left navigation pane. All edge nodes are
displayed.

Step 2 Select the target edge node and click Delete in the Operation column. Read the
message in the dialog box displayed.

Figure 2-144 Confirm

Step 3 (Optional) Unbind edge devices from the edge node.

NO TE

You can delete an edge node only after all devices bound to the edge node are deleted.

Step 4 Uninstall the edge software on the edge node.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

Copy the command displayed in the dialog box, use the SSH tool to log in to the
background system of the edge node, and run the command as user root to
delete the software and configuration files on the edge node.

Step 5 Click OK and wait until the edge node is deleted.

----End

2.11.2 Connecting a Device to an Edge Node

2.11.2.1 Connection Mode
After an IoTEdge application is deployed, the edge node functions as an extension
of IoTDA on the device side to manage devices through cloud-edge synergy. The
edge node provides computing and management services for nearby devices, such
as local management of low-latency services and local control upon disconnection
from IoTDA. The devices connect to the edge node and report data to IoTDA
through the edge node. The edge node supports two connection modes:

● Protocol conversion: The edge node supports access using Modbus and OPC
Unified Architecture (OPC UA). It converts Modbus and OPC UA messages
into MQTTS messages and reports data to IoTDA in JSON format. Devices
using Modbus or OPC UA are treated as child devices of the edge node.

● Transparent transmission gateway: The edge node supports MQTTS access.
MQTT devices or gateways can connect to IoTDA directly or through edge
nodes. The edge node functions as a gateway that transparently transmits
data reported by devices or gateways to IoTDA.

Figure 2-145 Connection modes

The table below describes the two connection modes.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

Connecti
on Mode

Applicable Device Type Scenario

Protocol
conversio
n

Devices that use Modbus or
OPC UA to connect to edge
nodes

Edge nodes function as gateways,
and devices connect to IoTDA as
child devices of the edge nodes.
The devices send data to the edge
nodes. The edge nodes convert
the data format into JSON,
encapsulate the JSON data into
MQTTS messages, and report the
MQTTS messages to IoTDA.

Transpare
nt
transmissi
on
gateway

Devices that use MQTTS to
directly connect to edge nodes

Devices integrate AgentLite SDK,
AgentTiny SDK, or LiteOS or
implement the native MQTTS
protocol. They send data to edge
nodes, which then transparently
transmit the data to IoTDA.

Devices that do not support
the TCP/IP protocol stack,
cannot directly communicate
with IoTDA, and want to use
gateways to connect to edge
nodes for near-end
management

Devices function as child devices
of gateways, the gateways are
directly connected to edge nodes,
and the edge nodes transparently
transmit data to IoTDA.
● The gateways connect to the

edge nodes by integrating IoT
AgentLite SDK.

● The devices connect to the
gateway through the near-field
communication protocol so the
devices and gateways use the
same protocol.

NO TICE

IoTEdge transparently transmits IoTDA packets. Table 2-41 lists the capabilities.
For devices described in Gateway requesting for adding child devices, you can
only view their information on the IoTDA console and cannot manage them on
the IoTEdge console.

Table 2-41 IoTDA packet transparent transmission capabilities of IoTEdge

Type Supported

1 Device commands Yes

1.1 Platform delivering a command Yes

2 Device messages Yes

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

Type Supported

2.1 Device reporting a message Yes

2.2 Platform delivering a message Yes

3 Device properties Yes

3.1 Device reporting properties Yes

3.2 Gateway reporting device
properties in batches

Yes

3.3 Platform setting device properties Yes

3.4 Platform querying device
properties

Yes

3.5 Device obtaining device shadow
data from the platform

Yes

4 Gateway and child device
management

Yes

4.1 Platform notifying a gateway of
new child device connection

Yes

4.2 Platform notifying a gateway of
child device deletion

Yes

4.3 Gateway synchronizing child device
information

Yes

4.4 Gateway updating child device
statuses

Yes

4.5 Platform responding to a request
for updating child device statuses

Yes

4.6 Gateway requesting for adding
child devices

Yes

4.7 Platform responding to a request
for adding child devices

Yes

4.8 Gateway requesting for deleting
child devices

Yes

4.9 Platform responding to a request
for deleting child devices

Yes

5 Software/Firmware upgrade No

5.1 Platform requesting the software
or firmware version

No

5.2 Device reporting the software or
firmware version

No

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

Type Supported

5.3 Platform delivering an upgrade
event

No

5.4 Device reporting the upgrade
status

No

6 File Upload and Download No

6.1 Device requesting a URL for file
upload

No

6.2 Platform delivering a temporary
URL for file upload

No

6.3 Device reporting file upload results No

6.4 Device requesting a URL for file
download

No

6.5 Platform delivering a temporary
URL for file download

No

6.6 Device reporting file download
results

No

7 Device time synchronization No

7.1 Device requesting time
synchronization

No

7.2 Platform responding to a request
for time synchronization

No

8 Device information reporting No

8.1 Device reporting information No

9 Device log collection No

9.1 Platform delivering a log collection
notification

No

9.2 Device reporting log content No

10 Remote configuration No

10.1 Platform delivering a
configuration notification

No

10.2 Device reporting the configuration
response

No

2.11.2.2 Protocol Conversion

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

2.11.2.2.1 Modbus Device Access

Overview

Modbus is a communications standard in the industrial field and is the most
commonly used connection mode between industrial electronic devices.

Devices using Modbus are not directly connected to IoTEdge nodes.

Figure 2-146 Modbus network topology

Access
Mode

Description Application Scenario

Indirect
access

A Modbus device connects to a
gateway through the RTU serial port,
and the gateway communicates with
the edge node using TCP. The
gateway functions as the master
node, and the Modbus device
functions as the slave node. You must
bind the Modbus device to the
gateway and distinguish Modbus
devices connected to the same
gateway based on the slave number.

Modbus devices that do not
support TCP communication
and can communicate only
through RTU serial ports

During data collection, the edge node can instruct the gateway to collect binary
data from Modbus devices at a specific interval.

After data collection is complete, the edge node normalizes the collected data into
JSON format and reports the data to IoTDA using MQTTS.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

Connection Procedure
Scenario Procedure Description

Device
preparation

Prepare a Modbus
gateway.

Apply for a gateway that supports
Modbus. (Modbus devices can
communicate with gateways through RTU
serial ports, and the gateways
communicate with edge nodes through
TCP.)

Prepare a Modbus
device.

Apply for a sensor that supports Modbus.

Platform
operations

Develop a product
model for the
Modbus device.

Develop a product model for the Modbus
device on the IoTDA console.

Add a Modbus edge
device (gateway).

Add a Modbus gateway under the edge
node.

Register a Modbus
child device.

Register a Modbus child device under the
Modbus gateway and bind the child
device to the specified Modbus gateway.

Developing a Product Model for a Modbus Device
To develop a product model for Modbus device capabilities, create a product,
define the product model, and build an abstract model for the device on IoTDA, so
that IoTDA can understand the services, properties, and commands supported by
the Modbus device, such as the temperature and battery level. For details, see
"Product Development" > "Developing a Product Model" > "Developing a Product
Model Online" in Developer Guide.

Create a product whose protocol type is Modbus.

CA UTION

● Protocol (mandatory): Modbus
● After creating a product, add services and properties for the product. An empty

product cannot be used to create a device. For details, see "Product
Development" > "Developing a Product Model" > "Developing a Product Model
Online" in Developer Guide.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

Figure 2-147 Creating a Modbus product

Adding a Modbus Edge Device
Add a Modbus gateway under the edge node. The procedure is as follows:

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Nodes in the left navigation pane, and click the name of the
target edge node to access its details page.

Step 3 Choose Application Module and click the Modules tab to deploy an edge
application.

To ensure that the edge device can go online properly, deploy the edge_access
application first. For details, see Deploying an Application.

Step 4 Choose Device, click the Edge Device List tab, click Add Edge Device, set the
parameters based on Table 2-42, and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

Figure 2-148 Adding a Modbus edge device

Table 2-42 Parameters for adding a Modbus edge device

Parameter Description

Product Select the product name modbus_server.
NOTE

● The system provides the preset product model modbus_server. Do
not delete it.

● If the resource space where the edge node is located is not the
default resource space, the product name of the Modbus gateway is
First 24 digits of the resource space ID+modbus_server.

Node ID Specify a unique physical identifier for the device, such as its
IMEI or MAC address. This parameter is used by IoTDA to
authenticate the device during device access.
If no physical device is available, enter a character string
consisting of letters and numbers.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

Parameter Description

Device Name Customize a value.

Connection
Type

● If you select Server, set the following parameters:
– IP: IP address of the Modbus server
– Port: port for connecting to the Modbus server, for

example, 502
● If you select Client, you must select an authentication type.

– None
– Password: secret details

Step 5 View the device status and manage the device.

You can click a device ID to access the Device Details page.

Figure 2-149 Managing an edge device

Table 2-43 Operations

Parameter Description

Edit Check or modify the configuration of an edge device.

Delete Delete an edge device.

Manage View details about the edge device and register a child device. For
details, see Registering a Modbus Child Device.

----End

Registering a Modbus Child Device
Register a Modbus child device under the Modbus gateway and bind the child
device to the specified Modbus gateway. The procedure is as follows:

Step 1 Choose IoTEdge > Nodes in the left navigation pane, and click the name of the
target edge node to access its details page.

Step 2 Choose Device and click the Edge Device List tab. On the displayed page, click
Manage on the right of the device.

Step 3 Click Register Child Device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

Figure 2-150 Registering a Modbus child device

Step 4 Register a Modbus child device.

1. Select the product created in Developing a Product Model for a Modbus
Device.

Figure 2-151 Selecting a product

2. Configure data collection. If you use a new product to register a Modbus child
device for the first time, you must configure data collection. You can modify
device configuration using batch property delivery. You can configure product
properties by following the instructions provided in Table 2-44.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

Figure 2-152 Configure Data Collection tab page

Table 2-44 Modbus child device properties

Parameter Description

Data to Collect – All device properties: An instruction is used to
collect all properties of a device. The collection
address range must be supported by the sensor. It
is recommended that the collection address range
of All device properties be the same as that of a
single measurement point.

– Individual device property: An instruction is used
to collect one property of a device.

Device Settings Set this parameter when Data to Collect is set to All
device properties.
Register Start Address: Customize a value.
Read Register Count: Customize a value.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

Parameter Description

Property
Settings

Read
Function
Code

Specify the read command provided by the Modbus
device.
Read function codes are classified into bit access
function codes and 16-bit access function codes. The
function codes are decimal numbers. Bit access
function codes:
– 01: read coils
– 02: read discrete inputs
16-bit access function codes:
– 03: read holding registers
– 04: read input register

Write
Function
Code

Specify the write command provided by Modbus
devices to servers.
Write function codes are classified into bit access
function codes and 16-bit access function codes. The
function codes are decimal numbers. Bit access
function codes:
– 05: write single coil
– 15: write multiple coils
16-bit access function codes:
– 06: write single register
– 16: write multiple registers
NOTE

When the device property values are stored in the unit of
register, it is recommended that Read Function Code be 3
and Write Function Code be 16.

Register
Address

Specify the address of the register that stores the
properties of the Modbus device. Each register
address occupies 16 bits.

Register
Count

Specify the number of registers where the property
data is located.

Byte
Swap

Specify whether to swap the upper and lower bits of
the data in the register. The default value is false. For
example, if the property data stored in the register is
0xabcd, the data obtained by the edge node after
byte swap is 0xcdab.

Register
Swap

Specify whether to swap the register position. The
default value is false. For example, if the start
address of register A is 0001 and that of register B is
0002, after register swap, the start address register A
is 0002 and that of register B is 0001.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

Parameter Description

Scale
Factor

The data in the register is multiplied by the scale
factor to obtain the required data. For example, if the
obtained temperature data is 365 and the scale
factor is 0.1, the obtained actual temperature data is
365 x 0.1 = 36.5

3. Add the child device. In the dialog box displayed, set the parameters based on

Table 2-45 and click OK.

Figure 2-153 Register Child Device dialog box

Table 2-45 Parameters for adding a child device

Paramete
r

Description

Node ID Specify a unique physical identifier for the device, such as its
IMEI or MAC address. This parameter is used by IoTDA to
authenticate the device during device access.
If no physical device is available, enter a character string
consisting of letters and numbers.

Device
Name

Customize a value.

slaveId Specify the ID of the secondary site.
Slave IDs identify different Modbus devices in the same
channel. The value of this parameter must be the same as the
slave number planned for the Modbus device.

period Specify the data collection interval.
Set an interval at which the edge node collects Modbus device
data. The unit is second. The minimum value is 1 second. Set
this parameter based on the actual data collection period of
the Modbus device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

Step 5 Power on the Modbus device to connect it to the edge node. After a data
collection period elapses, you can view the collected device data in the device list.

----End

2.11.2.2.2 OPC UA Device Access

Overview
OPC UA is widely used for communication between industrial equipment, thanks
to its robust features such as cross-platform, service-oriented architecture, and
secure communication.

Devices using OPC UA are not directly connected to IoTEdge nodes.

Figure 2-154 OPC UA network topology

To connect OPC UA devices to an IoTEdge node, a server that supports OPC UA
must be deployed on the edge side. Devices can access the server using OPC, OPC
UA, or other protocols. The EdgeAccess module deployed on the edge node
supports OPC UA access. The edge node functions as the OPC UA client to
communicate with the server. It uses the information configured during device
registration to browse the corresponding node on the server and perform
interaction such as subscription and data writing.

To connect an OPC UA device to an IoTEdge node, you must register an OPC UA
gateway with the edge node. Then register the OPC UA child device under the

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

OPC UA gateway, and configure the corresponding node path and subscription
period. The OPC UA server pushes data to the edge node based on the
subscription period when the child device data changes. The edge node reports
the data to IoTDA using MQTTS based on the product model.

During data collection, the edge node can instruct the gateway to collect binary
data from OPC UA devices at a specific interval. After data collection is complete,
the edge node normalizes the collected data into JSON format and reports the
data to IoTDA using MQTTS.

Connection Procedure

Scenario Procedure Description

Device
preparation

Prepare an OPC UA
gateway, which
functions as the
server.

Purchase a gateway that supports OPC
UA.

Prepare an OPC UA
device.

Apply for a sensor that supports OPC UA.

Operations
on IoTDA

Develop a product
model for the OPC
UA edge device.

Develop a product model for the OPC UA
edge device, which is the gateway, on the
IoTDA console.

Add an OPC UA edge
device.

Add an OPC UA edge device under the
edge node.

Register an OPC UA
child device.

Register an OPC UA child device under
the OPC UA edge device.

Developing a Product Model for an OPC UA Edge Device

To develop a product model for OPC UA device capabilities, create a product,
define the product model, and build an abstract model for the device on IoTDA, so
that IoTDA can understand the services, properties, and commands supported by
the OPC UA device, such as the temperature and battery level. For details, see
"Product Development" > "Developing a Product Model" > "Developing a Product
Model Online" in Developer Guide.

Create a product whose protocol is OPC UA.

CA UTION

● Protocol (mandatory): OPC-UA

● After creating a product, add services and properties for the product. An empty
product cannot be used to create a device. For details, see "Product
Development" > "Developing a Product Model" > "Developing a Product Model
Online" in Developer Guide.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

Figure 2-155 Creating an OPC UA product

Adding an OPC UA Edge Device
Add an OPC UA edge device under the edge node.

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Nodes in the left navigation pane, and click the name of the
target edge node to access its details page.

Step 3 Choose Application Module and click the Modules tab to deploy an edge
application.

To ensure that the edge device can go online properly, deploy the edge_access
application first. For details, see Deploying an Application.

Step 4 Choose Device, click the Edge Device List tab, click Add Edge Device, set the
parameters based on Table 2-46, and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

Figure 2-156 Adding an OPC UA edge device

Table 2-46 Parameters for adding an OPC UA edge device

Parameter Description

Product Select the product name opcua_server.
NOTE

● The system provides the preset product model opcua_server. Do not
delete it.

● If the edge node is not in the default resource space, the product
name of the OPC UA edge device is First 24 digits of the resource
space ID+opcua_server.

Node ID Specify a unique physical identifier for the device, such as its
IMEI or MAC address. This parameter is used by IoTDA to
authenticate the device during device access.
If no physical device is available, enter a character string
consisting of letters and numbers.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

Parameter Description

Device Name Customize a value.

url Enter the OPC UA access address provided by the OPC UA
server, for example, opc.tcp://192.168.1.1:4840.

user_name Enter the username used by the edge node to connect to the
OPC UA server. This parameter is optional.

user_passwor
d

Enter the password used by the edge node to connect to the
OPC UA server. This parameter is optional.

Step 5 View the device status and manage the device. You can also click its device ID to
access the IoTDA console for device query and management.

If the edge node is connected to the OPC UA server, the device status is Online.

Figure 2-157 Managing an OPC UA edge device

Table 2-47 Operations

Parameter Description

Edit Check or modify the configuration of an edge device.

Delete Delete an edge device.
NOTE

After deleting an edge device on the IoTDA console, log in to the IoTEdge
console, access the edge node details page, and delete the device on the
Edge Devices tab page. Otherwise, you will still be billed for the device by
IoTEdge.

Manage View details about the edge device and register a child device. For
details, see Registering an OPC UA Child Device.

----End

Registering an OPC UA Child Device

Register an OPC UA child device under the OPC UA edge device.

Step 1 Choose Device and click the Edge Device List tab. On the displayed page, click
Manage on the right of the device.

Step 2 Click Register Child Device.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

Figure 2-158 Register an OPC UA child device.

Step 3 Register an OPC UA child device.

1. Select a product. Select the product created in Developing a Product Model
for an OPC UA Edge Device.

Figure 2-159 Selecting a product

2. Configure data collection. If you use a new product to register an OPC UA
child device for the first time, configure a relative path for each property of
the device. You can modify configuration using batch property delivery. The
relative path is the relative position of the device property in the node path of
the OPC UA server address space. It is in the array format. Each item in the
array is the BrowseName of each layer from the node path to the device
property node.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

Figure 2-160 Configure Data Collection tab page

3. Add the child device. In the dialog box displayed, set the parameters based on
Table 2-48 and click OK.

Figure 2-161 Add Child Device dialog box

Table 2-48 Parameters for adding a child device

Paramete
r

Description

Node ID Specify a unique physical identifier for the device, such as its
IMEI or MAC address. This parameter is used by IoTDA to
authenticate the device during device access.
If no physical device is available, enter a character string
consisting of letters and numbers.

Device
Name

Customize a value.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

Paramete
r

Description

node_pat
h

Enter the path of a device node, which is the absolute path
from the Objects node to the device node in the OPC UA server
address space. The device node refers to the node where the
absolute paths of property nodes intersect in the address
space. The combination of the device node path and the
relative path of the property is the absolute path of the device
property node in the address space of the OPC UA server.

period Enter the interval at which the OPC UA server pushes data to
the edge node when device data changes, in ms.

Step 4 After the preceding operations are complete, the edge node subscribes to the
property node of the OPC UA device from the OPC UA server. If the OPC UA
device has been connected to the server, the edge node can successfully subscribe
to and read the property data and report the data. In the future, data will be
reported based on the subscription period when data changes.

----End

2.11.2.3 Transparent Transmission Gateway

The transparent transmission gateway mode applies to the following scenarios:

1. Devices that support the TCP/IP protocol stack can directly communicate with
the IoTDA platform, but are expected to directly connect to edge nodes for
near-end management.

2. Devices that do not support the TCP/IP protocol stack cannot directly
communicate with the platform. They must connect to edge nodes through
gateways for near-end management.

NO TICE

Table 2-41 describes the capabilities of IoTEdge to transparently transmit IoTDA
packets.

Direct Connection Between a Device and an Edge Node

A device is directly connected to an edge node by using the native MQTT protocol
or integrating IoT Device SDK or IoT Device SDK Tiny. The edge node transparently
transmits data reported by the device to the IoTDA platform and commands
delivered by the IoTDA platform to the device.

Perform the following operations to connect a device to an edge node:

Step 1 Log in to the IoTDA console.

Step 2 Develop a product model (also called profile) and codec, and perform self-service
tests.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

The cloud platform must be able to parse data reported by the device through the
edge node.

For details, see "Product Development" in Developer Guide.
● A profile is a JSON file that describes device capabilities. It defines basic

device properties and message formats for data reporting and command
delivery. Defining a profile is to build an abstract model of a device on the
IoTDA platform. When the device reports data, the IoTDA platform can
understand the properties supported by the device based on the defined
profile.

Step 3 Perform device-side development for connecting the device to the IoTDA platform.

1. Select an appropriate access mode based on the device. You can select the
native MQTT protocol or the SDK integration provided by the platform.
For details, see "Development on the Device Side" in Developer Guide.

a. If you use the native MQTT protocol for access, see "Using MQTT Demos
for Access".

b. If you use the provided SDK for access, see "Using IoT Device SDKs for
Access".

2. Change the device access IP address to the local IP address of the edge node
to be connected.

NO TE

Enable the device to access the edge node through port 7883 (for MQTT devices) and
download the server certificate for authentication. To download the certificate, click
Download CA Certificate on the Overview page of the IoTDA console.

Step 4 Add an edge device.

1. Log in to the IoTDA console.
2. Choose IoTEdge > Nodes in the left navigation pane, and click the name of

the target edge node to access its details page.
3. (Optional) Choose Application Module and click the Modules tab to deploy

an edge application.
To ensure that the device can be properly online, deploy the application in
Step 3 first. In the direct connection scenario, you do not need to deploy
other applications. For details, see Deploying an Application.

4. Choose Device, click the Edge Device List tab, click Add Edge Device, set the
parameters based on Table 2-49, and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

Figure 2-162 Adding an edge device

Table 2-49 Parameters for adding an edge device

Parameter Description

Product Select a product.
You can select a product only after it is defined on the
IoTDA console. If no product is available, create a product
first.

Node ID Specify a unique physical identifier for the device, such as
its IMEI or MAC address. This parameter is used by the
IoTDA platform to authenticate the device during device
access.
For MQTT devices, the device ID (corresponding to the node
ID) and secret generated after the registration are used for
device access.

Device Name Customize a value.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

Parameter Description

Module ID Leave it blank.
NOTE

By default, you do not need to enter a module ID. If the application
is integrated with the module SDK, you need to configure a
forwarding rule and enter the module ID of the third-party
application so that data can be reported to the platform.

password Customize a device secret.

5. Save the device ID and secret. They are used for authentication when the

device attempts to access the IoTDA platform.

Figure 2-163 Device ID and secret

NO TE

Use the MQTT simulator to connect to IoTEdge. For details, see "Using MQTT Demos
for Access" > "Debugging Using an MQTT Simulator" in Developer Guide.

6. View the device status in the device list and manage the device.
You can click a device ID to access the Device Details page.

Table 2-50 Operations

Operatio
n

Description

Edit Check or modify the configuration of an edge device.

Delete Delete an edge device.

Manage View details about the edge device and register a child device.

Step 5 Connect the device to an edge node.

Step 6 Verify that data reported by a device can be viewed on the device details page.

1. Power on the child device to report data to the IoTDA platform.
2. Log in to the IoTDA console.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

3. Choose IoTEdge > Nodes in the left navigation pane, and click the name of
the target edge node to access its details page.

4. Choose Device, click the Edge Device List tab, and click Manage to view the
device status. If the status is Online, the device has been connected to the
IoTDA platform.

Figure 2-164 Managing a child device

5. Return to the edge device list page. Click the device ID. On the details page,
view the latest reported data. If the data can be properly parsed and
displayed, the data reporting is successful.

Figure 2-165 Viewing the latest reported data

----End

Connection Between a Device and an Edge Node Through a Gateway

Devices use simple near-field communication protocols, such as ZigBee, Z-Wave,
and Bluetooth, or other non-IP wired transmission protocols, such as serial ports
and parallel ports, to access a gateway. The gateway connects to an edge node by
integrating the IoT Device SDK. The edge node transparently transmits data from
the gateway to the IoTDA platform and commands from the IoTDA platform to
the gateway.

Perform the following operations to connect a device to an edge node:

Step 1 Log in to the IoTDA console.

Step 2 Create a gateway, develop a product model (also called profile) and codec, and
perform self-service tests.

For details, see "Product Development" in Developer Guide.

The IoTDA platform must be able to parse data reported by the gateway and
device through the edge node.
● A profile is a JSON file that describes device capabilities. It defines basic

device properties and message formats for data reporting and command
delivery. Defining a profile is to build an abstract model of a device on the
IoTDA platform. When the device reports data, the IoTDA platform can

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

understand the properties supported by the device based on the defined
profile.

Step 3 Perform device-side development for connecting the gateway to the IoTDA
platform.

1. Integrate the IoT Device SDK into the gateway to access the IoTDA platform.
Currently, IoT Device SDKs using the C and Java programming languages are
available. During actual development, select an appropriate SDK for
integration based on the programming language and platform used during
development. For details, see "Development on the Device Side" > "Using IoT
Device SDKs for Access" in Developer Guide.

2. Change the gateway access IP address to the local IP address of the edge
node to be connected.

NO TE

Enable the MQTT gateway to connect to the edge node via port 7883.

Step 4 Add a gateway. In the IoTDA platform, the gateway is registered as a device. For
details, see Step 4.

Step 5 Connect the gateway to the edge node.

Step 6 Connect the child device to the gateway.

Step 7 Verify that data reported by a device can be viewed on the device details page.

1. Power on the child device to report data to the IoTDA platform.

2. Log in to the IoTDA console.

3. Choose IoTEdge > Nodes in the left navigation pane, and click the name of
the target edge node to access its details page.

4. Choose Device, click the Edge Device List tab, and click the device ID to
access the device details page.

5. Click the Child Devices tab, and view the device status in the device list. If the
status is Online, the device has been connected to the IoTDA platform.

NO TE

The status of a child device indicates whether the child device is connected to the
gateway, and the gateway reports the status to the platform for status updates. If the
gateway does not report the status of a child device, the child device status is not
updated on the platform. For example, after a child device connects to the platform
through a gateway, the child device status is displayed as online. If the gateway is
disconnected from the platform, the gateway can no longer report the child device
status and the platform will consider the child device online.

6. Click View to view the details, historical data, and operation records of the
child device.

----End

2.11.3 Application Management

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

2.11.3.1 Overview
IoTEdge expands application management capabilities to the edge by deploying
preset or custom applications on edge nodes. Table 2-51 describes the preset
applications in the system.

Table 2-51 Preset applications

Application
Name

Applicatio
n Type

Description

$edge_hub Mandatory It is the processing center on the edge node and is
responsible for device and communication
management.

$edge_agent Mandatory It manages edge applications on edge nodes,
including deployment, upgrade, and running
monitoring.

$edge_access Optional It extends the protocol access capability of edge
nodes. Currently, Modbus and OPC-UA protocols
are supported.

$edge_apigw Optional API gateway of the edge node, which provides
request routing as well as forward and reverse
proxy for edge applications. It must be used
together with route management.

$edge_omage
nt

Optional It performs remote monitoring and O&M on edge
nodes. It provides log reporting, remote SSH
connection, data reporting, and file upload/
download.

$edge_push Optional It provides the external push capability.

$edgetepa Optional It is used for traffic incident detection at the edge.

$ot_dc_db Optional It is used for edge data collection.

$edge_keepal
ive

Optional It is used for active/standby switchover.

$edge_rule Optional It is used to compute and process edge device
data.

$industry_dc_
bsi

Optional It is used for IT data collection.

2.11.3.2 Adding a Service Application
Add a custom edge application.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Applications in the left navigation pane. On the page
displayed, click Service Application, and click Add Application.

Step 3 After the application is added, go to the application version configuration page.

Step 4 On the Container Settings page, perform the following steps and click Next.

1. Enter the image path or installation package address.
2. Select container specifications as required.

Figure 2-166 Container specifications

3. Configure advanced settings.

Figure 2-167 Advanced settings

a. Runtime Command (which can be configured only in container-based
deployment mode)

Figure 2-168 Runtime command

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

▪ Runtime Command: Enter an executable command, for
example, /run/start.
○ If there are multiple commands, separate them with spaces, for

example, ls ps.
○ If a command contains a space, enclose the command in

quotation marks (""), for example, "sleep 100".

NO TE

If there are many commands, you are advised to run /bin/sh or other
shell commands and use other commands as parameters.

▪ Arguments: Enter an argument that controls the container runtime
command, for example, -port=8080.
If there are multiple arguments, separate them with line breaks.

b. Option Settings

If this setting is enabled (), the container has the permissions
required to access devices (such as GPUs and FPGAs) on the host.

c. Environment Variables

Figure 2-169 Environment variables

An environment variable is a variable whose value can affect the way a
running container will behave. You can modify environment variables
even after applications are deployed.

Click and enter a variable name and value.

NO TE

The platform does not encrypt the environment variables you entered.
If the environment variables you attempt to configure contain sensitive
information, encrypt them before entering them and decrypt them through
applications.
The platform does not provide any encryption and decryption tools. To configure
cypher text, use other encryption and decryption tools.

d. Data Storage
A volume is a storage volume used for container running.
A volume mounts a directory of the host into the container. Host
directory can be used for persistent storage. After an application is
deleted, the data in hostPath still exists in the local disk directory of the
edge node. If the application is re-created later, existing data can still be
read after the directory is mounted.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

Figure 2-170 Data storage

NO TE

▪ The container path must not be a system directory, such as / and /var/run.
Otherwise, an exception occurs. You are advised to mount the container to an
empty directory. If the directory is not empty, ensure that the directory does
not contain any files that affect container startup. Otherwise, the files will be
replaced, making it impossible for the container to be properly started.
Consequently, the application creation will fail.

▪ If the container is mounted into a high-risk directory, you are advised to use
an account with minimum permissions to start the container. Otherwise, high-
risk files on the host machine may be damaged.

▪ If the local volume type is set to LOG, DB, or CONFIG, the prefix /var/
IoTEdge/{log|db|config} is automatically added to the host directory. To
mount the container directory to a directory on the host, set the local volume
type to Other.

▪ If the disk space of the mounted directory is full, the node becomes abnormal
and cannot be used. In this case, clear the disk space in a timely manner.

▪ The system configures the config volume by default. The default mount
position is /config for the host machine and /opt/config for the container.

e. Health Check

Health check regularly checks the status of containers or workloads.
There is a liveness probe and a readiness probe.

▪ Liveness Probe: The system checks if a container is still alive, and
restarts the container if the probe fails. Currently, the system probes
a container by HTTP request or command and determines whether
the container is alive based on the response from the container.

▪ Readiness Probe: The system determines whether a container is
ready. If it is not ready, the system does not forward requests to it.

Figure 2-171 Health check

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

Table 2-52 Check methods

Paramete
r

Description

HTTP
request

IoTEdge periodically initiates an HTTP GET request to a
container. If HTTP code 2xx or 3xx is received, the
container is healthy.
IoTEdge will send an HTTP GET request to http://{Instance
IP address}/healthz:8080 10 seconds after the container
starts. If no response is received within 2 seconds, the
health check fails. If status code 2xx or 3xx is received, the
container is healthy.
NOTE

You do not need to specify the host address. By default, the
instance's IP address is used (requests are sent to the container)
unless you have special requirements.

CLI check The probe runs commands in the container and checks the
command output. If the command output is 0, the
container is healthy.
IoTEdge will run cat /tmp/healthy 10 seconds after the
container starts. If no response is received within 2
seconds, the health check fails. If the command output is
0, the container is healthy.

TCP check It checks whether the TCP port can be accessed. If it can
be accessed, the container is normal.

Figure 2-172 HTTP request

Figure 2-173 CLI check

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

Figure 2-174 TCP check

Step 5 Configure endpoint and deployment settings.

Figure 2-175 Configuring endpoint and deployment settings

1. Configure endpoints.
EdgeHub uses MQTT as the message bus to communicate with other
modules. MQTT functions as the broker to transfer data between EdgeHub
and other modules.
– Input Endpoint: suffix of the MQTT topic subscribed by a module. Before

sending data to the module, EdgeHub constructs an MQTT topic based
on the input endpoint configured for the module.

– Output Endpoint: suffix of the MQTT topic used when data is sent from
the module to EdgeHub.

NO TE

Only applications that are configured with input and output endpoints can use data
forwarding.

2. Deploy the application.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

Table 2-53 Deployment parameters

Parameter Description

Restart
Policy

Set this parameter based on service requirements.
– Always restart: The system restarts an application after it

exits normally or unexpectedly.
– Restart upon failure: The system restarts an application

only if it exits unexpectedly.
– No restart: The system does not restart an application

instance regardless of whether it exits (either unexpectedly
or not).

Network
Type

Containers can be accessed through a host network or using
port mapping.
– Host network

The network of the host (edge node) is used. To be
specific, the container and the host use the same IP
address, and network isolation is not required between
them.

– Port mapping
The container uses an independent virtual network.
Configure the mapping between container ports and host
ports to enable external communications. After the
mapping is configured, traffic destined for the host port is
directed to the mapping container port. For example, if
container port 80 is mapped to host port 8080, the traffic
destined for host port 8080 will be directed to container
port 80.

Step 6 On the Confirm page, set basic information based on Table 2-54 and click Next.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

Figure 2-176 Confirm page

Table 2-54 Container configuration parameters

Parameter Description

SDK Version Set the SDK version based on the site requirement.

Version Customize your edge application version.

Supported
Architecture
s

Select the architecture supported by the edge application, which
can be x86_64, Arm64, or both.
NOTE

Currently, Arm32 nodes cannot be deployed.

Step 7 Click OK. If you want to publish the application version at the same time, select
Publish Now.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

Figure 2-177 Application created

Step 8 Click Back to Applications.

You can see that the application type is Custom, which is different from the preset
applications in the system.

Figure 2-178 Application list

----End

2.11.3.3 Adding a Driver Application

Add a custom edge application.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Applications in the left navigation pane. On the page
displayed, click Driver Applications, and click Add Application.

Table 2-55 Adding a driver application

Paramete
r

Description

Driver ID (Mandatory) Customize the value, which must contain at least four
characters.

Driver
Name

(Mandatory) Customize the value, which must contain at least four
characters.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

Paramete
r

Description

Protocol Protocol type for application integration. If no protocol is used,
select Other.

Function
Type

Select the data collection option.

Applicatio
n
Descriptio
n

(Optional) Describe the functions and usage of the application.

Step 3 After the application is added, go to the application version configuration page.

Step 4 Configure software and deployment settings.

1. Select a deployment mode and enter basic information by referring to Table
2-56.

Figure 2-179 Software and deployment settings

Table 2-56 Deployment parameters

Parameter Description

Deploymen
t Mode

Container-based: The edge application runs as a Docker
container on edge nodes. Obtain the containerized
application from the corresponding image repository.
Package-based: The edge application runs as a process on
edge nodes. Before adding such an application, ensure that
the installation package has been uploaded to Object Storage
Service (OBS).

Container
Image

If container-based deployment is used, set this parameter to
the image repository address.

Installation
Package
Address

If Deployment Mode is set to Package-based, enter the
installation package address in OBS.

2. Select container specifications as required.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

Figure 2-180 Container specifications configuration

3. Configure advanced settings.

Figure 2-181 Advanced settings

a. Runtime Command (which can be configured only in container-based
deployment mode)

Figure 2-182 Runtime command

▪ Runtime Command: Enter an executable command, for
example, /run/start.
○ If there are multiple commands, separate them with spaces, for

example, ls ps.
○ If a command contains a space, enclose the command in

quotation marks (""), for example, "sleep 100".

NO TE

If there are many commands, you are advised to run /bin/sh or other
shell commands and use other commands as parameters.

▪ Arguments: Enter an argument that controls the container runtime
command, for example, -port=8080.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

If there are multiple arguments, separate them with line breaks.
b. Option Settings

If this setting is enabled (), the container has the permissions
required to access devices (such as GPUs and FPGAs) on the host.

c. Environment Variables

Figure 2-183 Environment variables

An environment variable is a variable whose value can affect the way a
running container will behave. You can modify environment variables
even after applications are deployed.

Click and enter a variable name and value.

NO TE

IoTEdge does not encrypt the environment variables you entered.
If the environment variables you attempt to configure contain sensitive
information, encrypt them before entering them and decrypt them through
applications.
IoTEdge does not provide any encryption and decryption tools. To configure
cypher text, use other encryption and decryption tools.

d. Data Storage
A volume is a storage volume used for container running.
A volume mounts a directory of the host into the container. Host
directory can be used for persistent storage. After an application is
deleted, the data in hostPath still exists in the local disk directory of the
edge node. If the application is re-created later, existing data can still be
read after the directory is mounted.

Figure 2-184 Data storage

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

NO TE

▪ The container path must not be a system directory, such as / and /var/run.
Otherwise, an exception occurs. You are advised to mount the container to an
empty directory. If the directory is not empty, ensure that the directory does
not contain any files that affect container startup. Otherwise, the files will be
replaced, making it impossible for the container to be properly started.
Consequently, the application creation will fail.

▪ If the container is mounted into a high-risk directory, you are advised to use
an account with minimum permissions to start the container. Otherwise, high-
risk files on the host machine may be damaged.

▪ If the local volume type is set to LOG, DB, or CONFIG, the prefix /var/
IoTEdge/{log|db|config} is automatically added to the host directory. To
mount the container directory to a directory on the host, set the local volume
type to Other.

▪ If the disk space of the mounted directory is full, the node becomes abnormal
and cannot be used. In this case, clear the disk space in a timely manner.

e. Health Check
Health check regularly checks the status of containers or workloads.
There is a liveness probe and a readiness probe.

▪ Liveness Probe: The system checks if a container is still alive, and
restarts the container if the probe fails. Currently, the system probes
a container by HTTP request or command and determines whether
the container is alive based on the response from the container.

▪ Readiness Probe: The system determines whether a container is
ready. If it is not ready, the system does not forward requests to it.

Figure 2-185 Health check

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

Table 2-57 Check methods

Paramete
r

Description

HTTP
request

IoTEdge periodically initiates an HTTP GET request to a
container. If HTTP code 2xx or 3xx is received, the
container is healthy.
IoTEdge will send an HTTP GET request to http://{Instance
IP address}/health:8080 10 seconds after the container
starts. If no response is received within 2 seconds, the
health check fails. If status code 2xx or 3xx is received, the
container is healthy.
NOTE

You do not need to specify the host address. By default, the
instance's IP address is used (requests are sent to the container)
unless you have special requirements.

CLI check The probe runs commands in the container and checks the
command output. If the command output is 0, the
container is healthy.
IoTEdge will run cat /tmp/healthy 10 seconds after the
container starts. If no response is received within 2
seconds, the health check fails. If the command output is
0, the container is healthy.

TCP check It checks whether the TCP port can be accessed. If it can
be accessed, the container is normal.

Figure 2-186 HTTP request

Figure 2-187 CLI check

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

Figure 2-188 TCP check

Step 5 Configure runtime settings.

Figure 2-189 Configuring endpoint and deployment settings

1. Configure endpoints.
EdgeHub uses MQTT as the message bus to communicate with other
modules. MQTT functions as the broker to transfer data between EdgeHub
and other modules.
– Input Endpoint: suffix of the MQTT topic subscribed by a module. Before

sending data to the module, EdgeHub constructs an MQTT topic based
on the input endpoint configured for the module.

– Output Endpoint: suffix of the MQTT topic used when data is sent from
the module to EdgeHub.

NO TE

Only applications that are configured with input and output endpoints can use data
forwarding.

2. Deploy the application.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

Table 2-58 Deployment parameters

Parameter Description

Restart
Policy

Set this parameter based on service requirements.
– Always restart: The system restarts an application after it

exits normally or unexpectedly.
– Restart upon failure: The system restarts an application

only if it exits unexpectedly.
– No restart: The system does not restart an application

instance after it exits normally or unexpectedly.

Network
Type

Containers can be accessed through a host network or using
port mapping.
– Host network

The network of the host (edge node) is used. To be
specific, the container and the host use the same IP
address, and network isolation is not required between
them.

– Port mapping
The container uses an independent virtual network.
Configure the mapping between container ports and host
ports to enable external communications. After the
mapping is configured, traffic destined for the host port is
directed to the mapping container port. For example, if
container port 80 is mapped to host port 8080, the traffic
destined for host port 8080 will be directed to container
port 80.

Step 6 Confirm the settings. Enter the basic information by referring to Table 2-59.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

Figure 2-190 Confirming configuration

Table 2-59 Application version settings

Parameter Description

Application
Name

Custom edge application name.

SDK Version Version number of the integrated edge SDK.

Version Customize your edge application version. You can choose
whether to publish it immediately.

Supported
Architecture
s

Select the architecture supported by the edge application. The
options are x86_64, arm32, and arm64. You can select multiple
options.

Support for
multiple
deployment
s

Whether the application version supports the deployment of
multiple instances on an edge node.

Data
Collection
Template

Template used by driver application OT data collection.

Step 7 Click OK to complete the application creation. Alternatively, click Publish Now to
complete the application creation and release the new version.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

Figure 2-191 Application created

Step 8 Click Back to Applications.

You can see that the application type is Custom, which is different from the preset
applications in the system.

Figure 2-192 Application list

----End

2.11.3.4 Adding a Version
You can create multiple application versions to facilitate application management.

Procedure
Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Applications in the left navigation pane.

Step 3 Select the name of the application for which you want to add a version. The
application details page is displayed.

Figure 2-193 Application details

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

Step 4 Click Add Version to add an edge application version.

Set the parameters based on Adding a Service Application.

----End

2.11.3.5 Deploying an Application
After an edge node is installed, you can deploy edge applications. Pay attention to
the following points during the deployment:

CA UTION

● In the standard edition, sys_edge_hub and sys_edge_agent are deployed by
default.

● Only published application versions can be deployed.
● Each application can be deployed only once on an edge node. After the

application is deleted, it can be deployed again.
● An application can be deployed only when the architecture supported by the

application is the same as that supported by the edge node.
● If an application requires an AI accelerator card, the deployment will fail if the

edge node does not have an AI accelerator card.
● Application modules can be upgraded, either to a later version or an earlier

version. Currently, only the Agent application ($edge_agent) that fails to be
upgraded can be rolled back to the source version.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Choose IoTEdge > Nodes in the left navigation pane.

Step 3 Click the target edge node name to access its details page.

Step 4 Choose Application Module, click the Modules tab, and click Deploy
Application.

Step 5 Configure the parameters as prompted and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

Figure 2-194 Deploying an application

Table 2-60 Parameters for deploying an application

Parameter Description

Edge
Application

Enter the name of the edge application to deploy.

Version Select a version for the application.

Module Customize a value.

Step 6 In the Operation Success dialog box displayed, click OK to return to the edge
application deployment list.

Figure 2-195 Confirmation

Step 7 Click Refresh. If the status of the application instance changes from Deploying to
Running, the deployment is successful.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

Figure 2-196 Deployment list

----End

Adding a Port Mapping
You can add a port mapping during or after application deployment only when
the application version supports the multiple deployment mode and the network
type is port mapping.

For details about the runtime configuration, see the step "Configure endpoint and
deployment settings" in "Adding a Service Application".

Figure 2-197 Deploying an Application

Figure 2-198 Adding a Port Mapping

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

CA UTION

● By default, sys_edge_hub and sys_edge_agent are deployed on an IoTEdge
standard node, and sys_edge_hub is deployed on an IoTEdge advanced node.

● By default, $edge_omagent is deployed on the standard and lite nodes. You can
determine whether to automatically deploy it during node registration.

● Only published application versions can be deployed.
● If multi-module deployment is configured when you add an application, the

application can be deployed on the same node for multiple times.
● An application can be deployed only when the architecture supported by the

application is the same as that supported by the edge node.
● If an application requires an AI accelerator card, the deployment will fail if the

edge node does not have an AI accelerator card.
● Application modules can be upgraded, either to a later version or an earlier

version. Currently, only the Agent application that fails to be upgraded can be
rolled back to the source version.

2.11.3.6 Managing an Application
You can manage IoTEdge applications. After an application is added, you can edit,
publish, copy, and delete the application version.

Viewing Application Details
All edge applications are displayed in the edge application list.

You can view the application type, deployment mode, function type, latest version,
description, creation time, and operation.

NO TICE

An application that contains a version cannot be deleted. To delete an application,
delete the versions of the application first.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

Figure 2-199 Viewing the application management list

In the application list, click an application name to go to the application details
page. You can view the latest version details of the application.

Figure 2-200 Version details

On the application details page, click the application name on the left to view the
version details.

NO TE

Published: Only published versions can be used to deploy instances. Published versions
cannot be edited or deleted.
Not published: You can edit and publish a version in the Not published state.
Unpublished: A version in the Unpublished state can be copied and deleted.
Deploy: You can deploy the application on online nodes in batches.
Upgrade Instances: You can upgrade the application on online nodes in batches.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

Table 2-61 Parameter description

Parameter Description

Publish After you click Publish, the version status changes from Not
published to Published, and then you can deploy instances. A
published application cannot be deleted.

Copy You can copy the configuration of an existing version to quickly
create a version.

Unpublish You can unpublish a version in the Published state.

Delete You can delete a version that is no longer required.
NOTE

You can delete a version in the Not published state or a version in the
Unpublished state that has not been deployed.
If the unpublished version has been deployed on a node, the version
cannot be deleted.

Deploy Select an edge node to deploy an instance. After the
deployment is complete, you can view the instance status in
the instance list on the version details page.

2.11.4 IT Subsystem Integration

2.11.4.1 Overview
IoTEdge is integrated with the industrial cloud subsystem to enable you to call
southbound third-party application APIs (including delivering configuration items
to third-party applications). It also enables you to report service data of each
industrial subsystem collected by southbound third-party applications to
northbound applications through the API gateway deployed on the edge node.

Route management is used to manage northbound applications (also called data
receiving endpoints). You can add, modify, and delete northbound applications,
and grant permissions of northbound applications to one or more edge nodes,
which can then report service data.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

Figure 2-201 Route management process

2.11.4.2 Route Configuration
Route configuration allows you to manage northbound applications, including
adding, deleting, modifying, and authorizing northbound applications.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose IoTEdge > Routes. Click Add Data Receiving
Endpoint in the upper right corner and specify the parameters based on the
following table.

NO TE

You can add up to 10 data receiving endpoints.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

Figure 2-202 Adding a data receiving endpoint

Table 2-62 Parameters for adding a data receiving endpoint

Parameter Description

Endpoint Name Enter the name of an endpoint.

Endpoint ID Enter the ID of the endpoint, which uniquely identifies a
northbound application.
If you select Identity authentication required for
external access, you must enter the secret key (SK). Then
the edge API gateway will calculate the signature and
send the signature to the external endpoint during data
forwarding.

Address for
Receiving Data

Enter the subdomain name of the API group. The system
automatically creates a temporary subdomain name,
which is used only for development and testing. This
subdomain name can be accessed 1000 times per day. You
must bind an independent domain name to the API group
to develop services.

Access Mode Edge nodes call APIs to forward service data. Select the
cloud service that the APIs depend on.
● If ROMA is selected, you must create an integrated

application on ROMA, create and publish APIs, and
enter the key and secret of the integrated application.

Description Provide a description for the endpoint.

Step 3 Send local service data to the endpoint.

1. Click the name of the created endpoint. On the displayed page, click Allocate
Node, select the node to be allocated, and click OK.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

Figure 2-203 Allocating nodes

2. A message is displayed in the upper right corner, indicating that the allocation
is successful.

----End

2.11.4.3 Module Configuration

After a route is configured, you must configure and manage modules. Module
configuration allows you to manage the configuration items of third-party
applications deployed on edge nodes. You can easily add or delete module
configuration items.

Prerequisites

The module configuration function can be used only when the edge node to
configure meets the following conditions:

● The edge_apigw application is deployed on the edge node. This application is
used to obtain configuration items.

● A third-party application (custom application) whose function is local
subsystem integration is deployed on the edge node.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Create an application.

1. Choose IoTEdge > Applications in the left navigation pane. On the page
displayed, click Service Application, and click Add Application.

For details about how to add a third-party application whose function is local
subsystem integration, see the following content.

2. When entering application configuration information, set Function to Local
subsystem integration.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

Figure 2-204 Application configuration

3. Configure data storage.
– Set Type to CONFIG.
– Set Permission to Read-write.

Figure 2-205 Data storage

Step 3 Deploy applications.

1. In the navigation pane, choose IoTEdge > Nodes, click the node bound in
Step 3 to go to the node details page.

2. Choose Application Module and click the Modules tab to deploy
applications.

3. Deploy the edge_apigw application.
If the edge_apigw application is not deployed on the node, deploy the
application first.

4. Deploy the third-party application whose function is local subsystem
integration, which is added in Step 2.

Step 4 Configure the module.

1. Click the Module Settings tab.

NO TE

A maximum of 100 configuration items can be added to a configurable module.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

2. Click Add Configuration Item, set the parameters, and click OK.

Table 2-63 Adding configuration items

Parame
ter

Description Type Value Range Example

Configur
ation
Item ID

Unique
configuration ID
of the
southbound IA.

String Allowed characters:
letters, numbers,
underscores (_),
and hyphens (-)
Length: 1 to 64
characters

config001

Configur
ation
Item
Name

Name of a
configuration
item.

String Allowed characters:
letters, numbers,
and hyphens (-)
Length: 1 to 64
characters

Configuratio
n001

Configur
ation
Value

Content that the
edge node
obtains from the
cloud and sends
to the device
application.

String Length: 1 to
2,097,152
characters (within 2
MB). No verification
is performed for
empty strings.

{"name":"xia
oming","age"
:18}

Descript
ion

Description of the
configuration
item.

String Length: 0 to 255
characters

N/A

----End

2.11.4.4 IT Data Collection

IoTEdge collects data of IoT devices and subsystems. IoTEdge collects and delivers
different subsystem data based on IT data source configuration.

Figure 2-206 Process for collecting IT data

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

Prerequisites
IT data collection is available only when the edge node to configure meets the
following conditions:

● The edge_apigw application and industry data collection application (such as
$industry_dc_bsi) are deployed on the edge node.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose IoTEdge > Nodes, click the node bound in Step 3
to go to the node details page.

Step 3 Deploy the $edge_apigw application and then the $industry_dc_bsi application.
Choose Application Module > Modules and click Deploy Application.

----End

Managing IT Data Collection Templates
A data source template describes the metadata of data source configuration
items. Before configuring a data source, import a data source template. IoTEdge
provides a preset common data source template. You can use the preset template
or customize a template.

Viewing a data source template

Step 1 Log in to the IoTDA console. In the navigation pane, choose IoTEdge > Nodes. On
the page displayed, click the created edge node to access its details page.

Step 2 Choose Application Module > Data Configuration > Data Source Template
Management to view the preset data source template.

----End

Managing Data Sources
The data source is unique on an edge node and is an instance of the data source
template. Systems that provide IT data include the supplier relationship
management (SRM), Enterprise resource planning (ERP), manufacturing execution
systems (MES), and database.

The following describes how to add two data sources.

Step 1 In the navigation pane, choose IoTEdge, click the node bound in Step 3 to go to
the node details page.

Step 2 Choose Application Module > Data Configuration > Add Data Source, add the
first data source ERP-API, and click Save and Deliver. The platform delivers the
new data source to the IT subsystem.
● Data Source ID: ERP-API
● Data Source Name: ERP-API
● Data Source Template: Common Data Source - API
● Service URL: http://120.46.132.171:9000

Step 3 Add the second data source MES-API and click Save and Deliver. The platform
delivers the new data source to the edge.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

● Data Source ID: MES-API
● Data Source Name: MES-API
● Data Source Template: Common Data Source - API
● Service URL: https://dlp-uatbe.mgm-iot.com

NO TE

If you click Save and Deliver, the platform delivers the new data source to the edge.
If you click OK, the configured data source is only saved on the cloud platform and is not
delivered to the edge. You can complete data source delivery operations in the data source
list.

----End

Configuring the Integration
An integration configuration template describes the integration configuration for
connecting to a specific IT system. Before performing integration configuration,
import an integration configuration template.

The following describes how to import a local integration configuration template.

Creating the integrated configuration

Step 1 In the navigation pane, choose IoTEdge > Nodes, click the node bound in Step 3
to go to the node details page.

Step 2 Choose Application Module > Data Configuration > Integration Configuration,
and click Add Integration Configuration. After the configuration is complete,
click Save and Deliver. The platform delivers data to the MES subsystem
synchronously.
● Configuration ID: MES-ERP-WorkPlan
● Upload Configuration Template: Save the code in the ERP-MES-template.json

sample as a JSON file to the local PC, and upload the file.
● MES Demo (YZ): MES-API
● ERP Demo: ERP-API
● YZtoken Request Header: Retain the default value.
● Product Synchronization Period (min): Retain the default value.
● Synchronization Period (min): Retain the default value.
● Modify: Retain the default item.

ERP-MES-template.json sample

{
 "config_values": [
 {
 "crypted": false,
 "name": "YZtoken Header",
 "value": "{\"Authorization\":\"Basic *******=\",\"Content-Type\":\"application/x-www-form-urlencoded
\"}",
 "key": "YZtoken Header"
 },
 {
 "crypted": false,
 "name": "product sync cycle (minutes)",
 "value": "14400",

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

 "key": "product sync cycle (minutes)"
 },
 {
 "crypted": false,
 "name": "sync cycle (minutes)",
 "value": "14400",
 "key": "sync cycle (minutes)"
 }
],
 "jobs": [
 {
 "cron": "0/20 * * * * ?",
 "output": {
 "scriptContent": "***********",
 "classify": "out",
 "path": "/opendata/v1/erp/production/plan",
 "ds_key": "266",
 "id": 2665,
 "type": "apiCall"
 },
 "input": {
 "scriptContent": "***********",
 "classify": "in",
 "path": "/workingPlan20",
 "ds_key": "267",
 "id": 2664,
 "type": "apiQuery"
 },
 "transform": {
 "scriptContent": "***********",
 "classify": "transform",
 "id": 2666,
 "type": "scriptChange"
 },
 "name": "MES-ProductionPlan-API",
 "id": 2664
 }
],
 "name": "MES-ERP",
 "id": 208,
 "data_sources": [
 {
 "name": "MES-Present(YZ)",
 "key": "266"
 },
 {
 "name": "ERP-Present",
 "key": "267"
 }
]
}

----End

Delivering ERP Data
After the IT data collection configuration is complete, IoTEdge delivers the
collected ERP data to the MES subsystem. You can view the data synchronization
result on the MES subsystem platform.

Data source delivery

Step 1 In the navigation pane, choose IoTEdge, click the node bound in Step 3 to go to
the node details page.

Step 2 Choose Application Module > Data Collection Configuration > Data Source,
locate ERP-API and MES-API in the data source list, and click Deliver. Wait for 20

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

seconds after the delivery status changes to Delivered. The platform synchronizes
data to the MES subsystem.

----End

Integration configuration delivery

Step 1 In the navigation pane, choose IoTEdge, click the node bound in Step 3 to go to
the node details page.

Step 2 Choose Application Module > Data Configuration > Integration Configuration.
In the integration configuration list, locate MES-ERP-WorkPlan and click Deliver.
Wait for 20 seconds after the delivery status changes to Delivered. The platform
synchronizes data to the MES subsystem.

----End

2.11.5 Route Forwarding

2.11.5.1 Overview

An edge node is a gateway for local devices. It collects edge device data and
connects to the third-party cloud platforms and external entities. You can deploy
the edge_push application on edge nodes to forward service data to cloud
applications or backend services as needed. You can configure the receiver of local
device data. Currently, MQTT, IoTDB, and InfluxDB V2 are supported.

NO TICE

Restrictions: Up to 10 channels can be configured for a user. Up to 100 nodes can
be allocated to each channel. The maximum channel traffic is 100 TPS.

Figure 2-207 Route forwarding workflow

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

Currently, child device data, driver data, and OT data can be pushed to third-party
MQTTS platforms, IoTDB databases, and InfluxDB V2 databases. For details about
the format, see Procedure.

Procedure

Step 1 Create an MQTTS/IoTDB/InfluxDB V2 channel.

Step 2 Deploy the edge push application on the node.

Step 3 Allocate the channel to the node that requires data push.

----End

2.11.5.2 Channel Types

2.11.5.2.1 MQTT

The following table lists the parameters that need to be set for an MQTT channel.

Table 2-64 MQTT channel parameters

Parameter Description

Endpoint Name Channel name.

Channel MQTT

Receiving address Broker address of the third-party MQTT
platform. Only TLS channels (for example,
ssl://127.0.0.1:7883) are supported.

Connection Information

Authenticate by Currently, only the user password is supported.

Username MQTT authentication username.

Password MQTT authentication password.

Trust Certificate Whether to verify the domain name when the
MQTT broker CA certificate is verified. (If this
parameter is deselected, only the server
certificate is verified.)

Push Information

Data Format Product model (IoTDA 1.0).

Topic Data push topic (for example, $oc/devices/
gateway) of the MQTT broker.

QoS MQTT quality of service (QoS). The default
value is 0.

Description Channel description.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

CA UTION

MQTT client ID cannot be configured. The default value is the node ID.

The data pushed through the MQTT channel is in the IoTDA 1.0 format. The
packet format is as follows:

{
 "devices": [{
 "device_id": "device1",
 "services": [{
 "service_id": "Motor",
 "properties": {
 "Current": 10.111,
 "Voltage": 20
 },
 "event_time": "2006-01-02T15:04:05.000Z"
 }
]
 }
]
}

2.11.5.2.2 IoTDB

The following table lists the parameters that need to be set for an IoTDB channel.

Table 2-65 IoTDB channel parameters

Parameter Description

Endpoint Name Channel name.

Channel Database.

Database Type IoTDB.

Receiving address IP address of the third-party IoTDB platform,
for example, 127.0.0.1:6667.

Connection Information

Username IoTDB authentication username.

Password IoTDB authentication password.

Push Information

Data Format Product model (IoTDA 1.0).

Storage Group Storage group to which IoTDB writes data, for
example, edge. (The corresponding user needs
to be authorized to write the storage group in
IoTDB.)

Description Channel description.

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

In the IoTDB time series database, the fixed prefix of all storage groups is root..
For example, if Storage Group is set to edge, the storage group of the database
to which data is written is root.edge.

The data written to the database is in the IoTDA 1.0 format. The packet format is
as follows:

{
 "devices": [{
 "device_id": "device1",
 "services": [{
 "service_id": "Motor",
 "properties": {
 "Current": 10.111,
 "Voltage": 20
 },
 "event_time": "2006-01-02T15:04:05.000Z"
 }
]
 }
]
}

The format of the data written to the database is as follows:

root.edge.device1.Motor.Current => 10.111
root.edge.device1.Motor.Voltage => 20

2.11.5.2.3 InfluxDB V2

The following table lists the parameters that need to be set for an InfluxDB V2
channel.

Table 2-66 InfluxDB V2 channel parameters

Parameter Description

Endpoint Name Channel name.

Channel Database.

Database Type InfluxDB_V2

Receiving address Address of the third-party InfluxDB V2
platform, for example, https://127.0.0.1:8086
or http://127.0.0.1:8086.

Connection Information

Token Token used by InfluxDB V2 for authentication
and identity verification.

Trust certificate Whether to verify the domain name when the
InfluxDB V2 CA certificate is verified. (If this
parameter is deselected, only the server
certificate is verified.)

Push Information

Data Format Product model (IoTDA 1.0).

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

Parameter Description

Organization Organization in InfluxDB V2.

Bucket Bucket in InfluxDB V2.

Description Channel description.

Measurement under bucket in InfluxDB V2 uses the data format of the IoTDA 1.0
product model.

For example, the product name is ElectricalMachinery and the packet is as
follows:

{
 "devices": [{
 "device_id": "device1",
 "services": [{
 "service_id": "Motor",
 "properties": {
 "Current": 10.111,
 "Voltage": 20
 },
 "event_time": "2006-01-02T15:04:05.000Z"
 }
]
 }
]
}

When data is written into the database, the product name is used as the
measurement, and the device ID and service ID are used as tags. The format of
data written to the database is as follows:

measurement: ElectricalMachinery
tags: {"device": "device1", "service": "Motor"} fields: {"Current": 10.111, "Voltage": 20}

2.11.5.3 Creating a Channel
Route forwarding allows you to manage data receiving channels, including adding,
deleting, modifying, and allocating channels.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose IoTEdge > Route Forwarding. Click Add Data
Receiving Endpoint in the upper right corner and specify the parameters based
on the following table.

Currently, MQTT, IoTDB, and InfluxDB V2 channels are supported.

● For details about how to add an MQTT channel, see MQTT.
● For details about how to add an IoTDB channel, see IoTDB.
● For details about how to add an InfluxDB V2 channel, see InfluxDB V2.

Step 3 Click OK.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

2.11.5.4 Deploying the Edge Push Application on a Node

Procedure

CA UTION

Route forwarding requires EdgeHub 1-1-21 or later.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose IoTEdge > Nodes, and click the target edge node
name.

Step 3 Choose Application Module and click the Modules tab to deploy applications.

Step 4 Select the data processing function, select the $edge_push application, select a
version, and click OK.

----End

2.11.5.5 Allocating a Channel to a Node

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose IoTEdge > Route Forwarding, click a created
MQTTS channel to go to the channel details page, and click Allocate Node.

Step 3 On the node allocation page, select the node where the edge push application is
deployed in Deploying the Edge Push Application on a Node and click OK.

Step 4 A message is displayed in the upper right corner, indicating that the allocation is
successful.

----End

IoT Device Access(IoTDA)
User Guide 2 User Guide

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

3 Best Practices

3.1 Connecting a Device Simulator to IoTDA
This topic uses a device simulator as an example to describe how to connect
devices to IoTDA using the native MQTT protocol. The device simulator is an
MQTT client, which enables you to easily verify whether devices can interact with
IoTDA to publish or subscribe to messages.

Obtaining Device Access Information
Perform the following procedure to obtain device access information on the IoTDA
console:

Step 1 Log in to the IoTDA console.

Step 2 Choose Overview in the navigation pane, view the device access information, and
record the IP address and port number.

Step 3 Click Download CA Certificate to save the server certificate file.

----End

Creating a Product

Step 1 Create an MQTT product. (If an MQTT product already exists, skip this step.)

Step 2 Choose Products in the navigation pane and click Create Product in the upper
right corner.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

Step 3 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

IoTDA automatically allocates the created product to the default
resource space.
● If you want to allocate the product to another resource space,

select the required resource space from the drop-down list.
● If the corresponding resource space does not exist, choose

Resource Spaces in the left navigation pane and create a
resource space.

Product
Name

Name the product. The product name is unique in the resource
space.

Protocol Select MQTT.

Data Type Select JSON.

Manufacture
r

Enter the manufacturer name of the device.

Device Type You can set it to StreetLight, GasMeter, or WaterMeter.

----End

Registering a Device

Step 1 On the console, choose Devices > All Devices in the navigation pane, and click
Register Device in the upper right corner.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Select the same resource space of the product created in
Creating a Product.

Product Select the product created in Creating a Product.

Node ID Customize a unique physical identifier for the device. The
device ID (corresponding to the node ID) and secret generated
after the registration are used for device access.

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret Specify a secret used for device access. If no secret is specified,
IoTDA automatically generates one.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

Save the device ID and secret. They are used for authentication when the device
attempts to access IoTDA.

----End

Connecting a Device Simulator to IoTDA

Step 1 Download the simulator (for 64-bit operating system by default) and start it.

Step 2 Perform operations on the UI.

1. On the simulator UI, enter the server address, device ID, and device secret. Set
the parameters based on the actual device information.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

https://znzd.obs.cn-north-4.myhuaweicloud.com/MQTT_Simulator.zip

– Server address: domain name. For details about how to obtain it, see
"Developer Guide" > "Obtaining Resources" > "Platform Connection
Information" in the Usage Guide.

– Device ID and secret: Obtain them from Registering a Device.
2. Use the corresponding certificate files together with different server addresses

during SSL-encrypted access. Obtain a certificate by referring to Obtaining
Device Access Information. Replace the certificate in the certificate folder
and change the certificate name to rootcert.pem, as shown in the following
figures.

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS 2 is not supported.
For details, see "Service Overview" > "Limitations" in the Usage Guide.

Step 3 Establish a connection.

To connect a device or gateway to IoTDA, upload the device information to bind
the device or gateway to IoTDA. Click Connect. If the domain name, device ID,
and secret are correct, a device connection success is displayed in the log. Check
the device status on IoTDA, as shown in the following figure.

Step 4 Subscribe to a topic.

Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see "API Reference"
> "API Reference on the Device Side" > "Topics" in the Usage Guide.

After the connection is established and a topic is subscribed, the following
information is displayed in the log area on the home page of the demo:

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

Step 5 Publish a topic.

Publishing a topic means that a device proactively reports its properties or
messages to IoTDA. For details, see "API Reference" > "API Reference on the
Device Side" > "Device Property APIs"> "Reporting Device Properties" in the Usage
Guide.

The simulator implements the property reporting topic and property reporting.

After a topic is published, the following information is displayed on the demo
page:

If the reporting is successful, the reported device properties are displayed on the
device details page.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

Step 6 Receive a command.

The simulator can receive commands delivered by the platform. After an MQTT
connection is established and a topic is subscribed, you can deliver a command on
the device details page of the IoTDA console. After the command is delivered, the
MQTT callback receives the command delivered by the platform.

In the navigation pane, choose Products and click the target product. On the
Model Definition page, click Add Command, set the command name and
parameters, and click OK to save the command.

In the navigation pane, choose Devices > All Devices > View. On the device
details page, choose Commands > Synchronous Command Delivery > Deliver
Command. For example, deliver the command whose parameter name is
smokeDetector: SILENCE and parameter value is 50.

After the synchronous command is delivered, the following information is
displayed on the demo page:

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

----End

3.2 Automatic Device Shutdown Upon High
Temperature

Scenarios
IoTDA supports device data reporting and command delivery. To associate the two,
an application needs to provide corresponding logic.

However, with the rule function provided by IoTDA, the platform can
automatically deliver specified commands when specific data is reported, reducing
the application development workload.

In this example, when the temperature reported by the temperature sensor of a
device is higher than 80°C, IoTDA automatically delivers a command to shut down
the device.

Configuring IoTDA
Using IoTDA, you can create a product, upload a model file, register a device, and
set a device linkage rule to enable IoTDA to send a command when receiving
specific data from the device.

1. Log in to the IoTDA console.
2. Choose Products in the navigation pane and click Create Product in the

upper right corner to create an MQTT product. Set the parameters and click
OK.
Note: The product model and device used in this topic are only examples. You
can use your own product model and device.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

Parameter Description

Resource
Space

IoTDA automatically allocates the created product to the
default resource space.
● If you want to allocate the product to another resource

space, select the required resource space from the drop-
down list.

● If the corresponding resource space does not exist, choose
Resource Spaces in the left navigation pane and create a
resource space.

Product
Name

Name the product. The product name is unique in the
resource space.

Protocol Select MQTT.

Data Type Select JSON.

Manufactur
er

Enter the manufacturer name of the device.

Device Type Set this parameter based on service requirements.

3. Click Profile.zip to download a sample product model file.

4. Click the created product to go to the product details page. On the Model
Definition tab page, click Import from Local. In the displayed dialog box,
click Select File, select the product model file obtained in the previous step,
and click Upload.

Figure 3-1 Uploading a model file

5. In the navigation pane, choose Devices > All Devices. Click Register Device
and configure the device registration parameters.

Parameter Description

Product Select the product created in 2.

Node ID Set this parameter to the IMEI, MAC address, or serial
number of the device. If the device is not a physical one, set
this parameter to a custom character string that contains
letters and digits.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/edgenode/Profile.zip

Parameter Description

Device Name Customize the value.

Authenticati
on Type

Select Secret.

Secret Specify a secret used for device access. If no secret is
specified, IoTDA automatically generates one.

Click OK. Click the button to save the device ID and secret returned after the
registration is successful.

6. In the navigation pane, choose Rules > Device Linkage, and click Create
Rule in the upper right corner.

7. Set the parameters based on the table below. The following parameter values
are only examples. You can create your own rules. After setting the
parameters, click Create Rule.

Parameter Description

Rule Name Specify the name of the rule to be created, for example,
Overheated.

Activation Select Activate upon creation.

Effective
Period

Select Always effective.

Description Provide a description of the rule, for example, "The device is
automatically shut down when the device temperature is
higher than 80°C."

Set Triggers 1. Select Triggered upon specified device.
2. Select the device added in 5.
3. Select tempSensor for Select service, temperature for

Select property, > as the operation, and enter 80. Click
Trigger Mode. In the displayed dialog box, set Data
Validity Period (s) to 300 and click OK.

Set Actions 1. Select Deliver Commands, and select the device created
in 5.

2. Select deviceSwitch for Select service, and ON_OFF for
Select command. Click Configure Parameter. In the
dialog box displayed, set power to OFF, and click OK.

Verifying the Configurations
● You can use a registered physical device to access the platform and enable the

device to report the temperature greater than 80.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

● You can also use a simulator to simulate a device to publish the topic $oc/
devices/{device_id}/sys/properties/report (replace {{device_id}} with the
actual device ID) and report data whose temperature is greater than 80.

Expected result:

● If you use a physical device to report data, the device receives an ON_OFF
command in which power is OFF.

● If you use a simulator to report data, subscribe to Topic: $oc/devices/
{device_id}/sys/commands/# before reporting data. Replace {device_id} with
the actual device ID. After data is reported, the ON_OFF command with the
power parameter set to OFF is displayed on the Subscribe tab page.

3.3 Triggering and Forwarding an Alarm

Scenarios

IoTDA supports device alarms. You can configure rules to push alarms to
applications.

Device alarms can be generated in either of the following ways:

1. Device linkage rule: When a device reports data and meets the linkage rule
triggering condition, a device alarm is generated.

2. Device alarm API: A device directly reports alarms through APIs. For details
about the topic and the alarm data format, see "API Reference on the Device
Side" > "Device Alarm Management APIs" in the API Reference.

This section describes the first mode. Based on the configured device linkage rule,
when the temperature reported by the device sensor is higher than 80°C, a device
alarm is generated and then pushed to the application.

Configuring IoTDA

You can create a product, upload a model file, register a device, set a device
linkage rule, and configure a data forwarding rule. In this way, when a device
reports specific data, the linkage rule is triggered and an alarm is generated.

Step 1 Log in to the IoTDA console.

Step 2 Choose Products in the navigation pane and click Create Product in the upper
right corner to create an MQTT product. Set the parameters and click OK.

CA UTION

The product model and device used in this topic are only examples. You can use
your own product model and device.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

Table 3-1 Creating a product

Parameter Description

Resource
Space

IoTDA automatically allocates the created product to the default
resource space.
● If you want to allocate the product to another resource space,

select the required resource space from the drop-down list.
● If the corresponding resource space does not exist, choose

Resource Spaces in the left navigation pane and create a
resource space.

Product
Name

Name the product. The product name is unique in the resource
space.

Protocol Select MQTT.

Data Type Select JSON.

Manufacture
r

Enter the manufacturer name of the device.

Device Type Set this parameter based on service requirements.

Step 3 Click Profile.zip to download a sample product model file.

Step 4 Click the created product to go to the product details page. On the Model
Definition tab page, click Import from Local. In the displayed dialog box, click
Select File, select the product model file obtained in the previous step, and click
Upload.

Figure 3-2 Uploading a model file

Step 5 In the navigation pane, choose Devices > All Devices. Click Register Device and
configure the device registration parameters.

Table 3-2 Registering a device

Parameter Description

Product Select the product created in 2.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/edgenode/Profile.zip

Parameter Description

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom character string that contains letters
and digits.

Device Name Customize the value.

Authenticatio
n Type

Select Secret.

Secret Specify a secret used for device access. If no secret is specified,
IoTDA automatically generates one.

Click OK. Click the button to save the device ID and secret returned after the
registration is successful.

Step 6 In the navigation pane, choose Rules > Device Linkage, and click Create Rule in
the upper right corner.

Step 7 Set the parameters based on the table below. The following parameter values are
only examples. You can create your own rules. After setting the parameters, click
Create Rule.

Table 3-3 Creating a linkage rule

Parameter Description

Rule Name Specify the name of the rule to be created, for example,
Overheated.

Activation Select Activate upon creation.

Effective
Period

Select Always effective.

Description Provide a description of the rule, for example, "The device is
automatically shut down when the device temperature is higher
than 80°C."

Set Triggers 1. Select Triggered upon specified device.
2. Select the device added in 5.
3. Select tempSensor for Select service, temperature for

Select property, > as the operation, and enter 80. Click
Trigger Mode. In the displayed dialog box, set Data Validity
Period (s) to 300 and click OK.

Set Actions Select Report alarms for the action type, select the alarm
severity, enter the alarm name, and edit the alarm content.

Step 8 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

Step 9 Set the parameters based on the table below. The following parameter values are
only examples. You can create your own rules. After setting the parameters, click
Create Rule.

Figure 3-3 Creating a rule

Table 3-4 Creating a rule

Parameter Description

Rule Name Specify the name of the rule to be created, for example,
Overheated.

Description Describe the rule.

Data Source Select Device alarm.

Trigger Select Device alarm generated. (You can also select Device
alarm cleared to push an alarm clearance notification.)

Resource
Space

Select the resource space to which the product belongs.

Step 10 Configure the forwarding target. Select the target type, configure related
information, and enable the rule.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

Figure 3-4 Setting the forwarding target

----End

Verifying the Configurations
● You can use a registered physical device to access the platform and enable the

device to report the temperature greater than 80.
● You can also use a simulator to simulate a device to publish the topic $oc/

devices/{device_id}/sys/properties/report (replace {{device_id}} with the
actual device ID) and report data whose temperature is greater than 80.

Expected result:

● The configured forwarding target can receive the device alarm notification
pushed by the platform.

3.4 Sharing Device Location Information

Scenarios
You can set data forwarding rules to push the device geographical information to
applications. When devices report properties or you configure device asset
properties and tags, the rules are triggered and the platform pushes data to
applications.

Data Sharing Through Device Properties

Step 1 Access the IoTDA console, create an MQTT product, add a device, and connect the
device to the platform. For details, see Connecting a Device Simulator to IoTDA.

Step 2 Customize the product model and add the longitude and latitude properties.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

Figure 3-5 Defining a product model

Step 3 Create a rule for device property data forwarding. For details, see "Rules" > "Data
Forwarding" in the User Guide.

Figure 3-6 Creating a rule

Step 4 The device reports the longitude and latitude information to the platform through
property reporting.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

Figure 3-7 Reporting properties

Step 5 The platform receives the data and the rule is triggered to forward the data to the
application.

----End

Data Sharing Through Tags

Step 1 Access the IoTDA console, create an MQTT product, add a device, and connect the
device to the platform. For details, see Connecting a Device Simulator to IoTDA.

Step 2 Create a rule for device property data forwarding. For details, see "Rules" > "Data
Forwarding" in the User Guide.

Figure 3-8 Creating a rule

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

Step 3 On the device details page, click the Tags tab to add the longitude and latitude
tags.

Figure 3-9 Adding a tag

Step 4 When the device reports any property data and triggers the data forwarding rule,
the data is pushed to the application together with the tag information.

Figure 3-10 Reporting properties

Data received by the application:

{
 "resource": "device.property",
 "event": "report",
 "event_time": "20231110T031806.148Z",
 "notify_data": {
 "header": {
 "app_id": "39a2781036184a4496f58528577f4954",
 "device_id": "mqtts_no_script_001",
 "node_id": "mqtts_no_script_001",
 "product_id": "653f70759ca2f949659efea0",
 "gateway_id": "mqtts_no_script_001",
 "tags": [{
 "tag_key": "latitude",
 "tag_value": "31.873211"
 }, {
 "tag_key": "longitude",
 "tag_value": "118.837137"
 }]

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

 },
 "body": {
 "services": [{
 "service_id": "position",
 "properties": {
 "level": "7",
 "temperature": "110"
 },
 "event_time": "20231110T031806Z"
 }]
 }
 }
}

----End

Data Sharing Through Asset Properties

Step 1 Create a data forwarding rule by referring to "Rules" > "Data Forwarding" in the
User Guide. Select Device for Data Source, Device updated or Device added for
Trigger, and select the resource space to which the product belongs.

Figure 3-11 Creating a rule

Step 2 On the product details page, click the Asset Properties tab and add the longitude
and latitude fields.

Figure 3-12 Configuring product asset properties

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

Step 3 On the device details page, click the Asset Properties tab, configure asset
properties, and click Save. The rule created in Step 1 is triggered, and the asset
properties are pushed to the forwarding target.

Figure 3-13 Configuring device asset properties

----End

3.5 Using a Custom Topic for Communication

Scenarios
You can customize topics for MQTT devices in device message reporting and
platform message delivery. Applications can implement different service logic
based on topics. Custom topics can also be used in the scenario where a device
cannot report properties or receive delivered commands defined in the product
model.

In this example, an application receives the temperature data reported by a device
through the topic and determines whether to turn on or off the indoor air
conditioner.

Prerequisites
● You have created an MQTT product, developed a product model, and added a

device on the IoTDA console. For details, see Connecting a Device Simulator
to IoTDA.

Message Reporting

Step 1 Access the IoTDA console.

Step 2 In the navigation pane, choose Devices > All Devices, find the corresponding
device, and click View to access its details page.

Step 3 Click the Message Trace tab, click Start Trace, and set the trace duration as
required.

Step 4 Simulate a device to report a custom topic message. For details, see Connecting a
Device Simulator to IoTDA.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

Figure 3-14 Reporting messages through custom topics

Step 5 On the Message Trace page, view the custom topic message reported by the
device.

Figure 3-15 Message tracing

Step 6 An application obtains the custom topic message reported by the device through
data forwarding. For details about data forwarding modes, see "Rules" > "Data
Forwarding" in the User Guide.

----End

Message Delivery

In this example, the Postman tool is used to deliver an instruction for turning on
the indoor air conditioner.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

Step 1 Use the MQTT simulator to simulate a device to subscribe to a custom topic.

Figure 3-16 Subscribing to a topic

Step 2 Use the Postman tool to simulate an application to call the API for message
delivery to deliver an instruction for turning on the indoor air conditioner.

Figure 3-17 Calling the message delivery API

Step 3 Call the API for querying device messages to check whether the instruction is
delivered. If yes, the indoor air conditioner will be turned on.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

Figure 3-18 Calling the message query API

----End

3.6 Quick Integration with ROMA Connect
Scenarios

IoTDA provides unified device access in industry solutions, such as smart city and
smart campus. However, these solutions also require comprehensive service
capabilities such as video surveillance, meeting system, geographic information
system (GIS), and data lake. To connect these systems to IoTDA, you need to
integrate IoTDA with the unified data integration platform ROMA Connect. The
following figure shows the common architecture for the integration of IoTDA and
ROMA Connect.

IoTDA and ROMA Connect are integrated using the following to methods:

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

● APIs
All northbound IoTDA APIs can be connected to ROMA APIC for upper-layer
applications to call. For details about supported APIs, see API Reference.

● MQS push
All real-time events and data of IoTDA can be pushed to ROMA MQS for
unified subscription by upper-layer applications. For details about the
supported real-time events and data types, see Data Forwarding.

Prerequisites

Complete the following tasks to ensure successful integration of IoTDA and ROMA
Connect.

1. You have an available ROMA Connect instance.
2. A physical or simulated device is connected to IoTDA and can report data. For

details, see Connecting MQTT Devices.
3. You have created an access key (AK/SK, Access Key ID/Secret Access Key) for

ROMA APIC authentication. For details about how to create an access key, see
Access Key.

Configuring API Integration

As the backend service of ROMA APIC, IoTDA provides backend APIs for
registration with APIC. Then, APIC encapsulates and orchestrates the APIs into
frontend APIs for applications to call, as shown in the following figure.

The following uses the device query API as an example to describe how to register
the API with ROMA APIC.

Parameters project_id and device_id of the backend device query API need to be
transferred externally. The path parameter of the two backend APIs is mapped to
the query parameter of the frontend API and exposed as the GET /iot/devices API.

Frontend API:

Request
Method

GET

URI /iot/devices?project_id={project_id}&device_id={device_id}

Transpor
t
Protocol

HTTPS

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

Backend API:

Request
Method

GET

URI /v5/iot/{project_id}/devices/{device_id}

Transpor
t
Protocol

HTTPS

● Creating a signature key

All IoTDA APIs at the application side require authentication. The following
describes how to configure the access key of IoTDA on ROMA Connect.

Step 1 Log in to the ROMA Connect console and choose API Connect > API
Management. On the Signature Keys tab page, click Create.

Step 2 Set Type to hmac. Enter the prepared AK and SK in Key and Secret, respectively.
Click OK.

----End

● Creating an API

The following demonstrates how to use APIC to integrate the frontend device
query API with IoTDA.

Step 1 Log in to the ROMA Connect console, choose API Connect > API Management,
and click Create API.

Step 2 On the Create API page, set the API name to QueryDeviceDetails.

Step 3 Generally, there is no group or integration application for a new ROMA Connect
instance. Click the marked links to create a group and integration application as
prompted.

Step 4 Create the group and integration.

Step 5 See the ROMA Connect official documentation for details about the remaining
settings. In this example, default settings are used.

Step 6 Click Next to configure the API request. Enter the frontend API for querying device
details in the request path.

Step 7 Click Add Input Parameter to add the two query parameters project_id and
device_id to Input Parameters.

Step 8 Click Next.

Step 9 In Backend Address, enter the northbound IoT application address. For details
about how to obtain the address, see "Appendix" > "Obtaining the Application
Access Address" in API Reference. In Path, enter the actual API path.

Step 10 APIC allows frontend API parameters to be transparently transmitted to the
backend. You can click Import Input Parameter to import the input parameters

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

configured in the previous step. You can specify the parameter mapping in the
backend parameter name. Parameters of the backend device query API are in
PATH.

Step 11 Click Next, and then click Publish API.

Step 12 On the Publish API page, click Publish.

----End

● Binding a signature key to an API

Step 1 On the API details page, click Signature Keys.

Step 2 Click Bind.

Step 3 Select the created key and click OK.

----End

Verifying the API Integration

Step 1 Click Debug on the right part of the API details page.

Step 2 Enter values of project_id and device_id, and click Send Request.

Step 3 View the response displayed on the right.

----End

Configuring MQS Push
The following uses real-time device data reporting as an example to describe how
to push data to ROMA MQS through data forwarding.

● Creating a topic

Step 1 Log in to the ROMA Connect console, choose Message Queue Service > Topic
Management, and click Create Topic.

Step 2 Set Topic Name to IOT_TEST and set other parameters based on the site
requirements. In this example, the default values are used. Click OK.

----End

● Configuring data forwarding to MQS on IoTDA

Step 1 View the MQS connection address and authentication information on the
Instance Information page of the ROMA Connect console.

Step 2 On the IoTDA console, choose Rules > Data Forwarding > Create Rule.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

Step 3 Create a forwarding rule, as shown in the following figure.

Step 4 Click Continue to set the forwarding target.

Step 5 Click Add and choose ROMA Connect.

Step 6 Enter the MQS push address, username (AppKey), password (AppSecret), and
topic, as shown in the following figure. (If there are multiple IP addresses and
ports, click Add Address to add them.)

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

Step 7 Click OK.

Step 8 Return to the data forwarding page and click Enable to make the rule take effect.

----End

Verifying MQS Push

Step 1 Log in to the ROMA Connect console, choose Message Queue Service > Message
Query. In the upper right corner, select IOT_TEST.

Step 2 If the real-time data reported by the device is displayed, the push is successful.

----End

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

3.7 Developing a Protocol Conversion Gateway for
Access of Generic-Protocol Devices

Scenarios
Currently, the platform supports only standard protocols such as MQTT, HTTP, and
LwM2M. If a device uses other protocols (referred to as third-party protocols), it
cannot access the platform directly.

To address this issue, protocol conversion must be performed outside the platform.
It is recommended that a gateway be used to convert third-party protocols into
MQTT. This gateway is called the protocol conversion gateway.

Principles
The figure below shows the overall architecture of the solution.

Figure 3-19 Protocol conversion gateway

The protocol conversion gateway can be deployed in the cloud or locally. A third-
party protocol device is connected to the platform as a child device of the protocol
conversion gateway.

The protocol conversion gateway consists of the following components:

1. Third-party protocol access: This component parses and verifies third-party
protocols.

2. Protocol conversion: This component converts between third-party protocol
data and platform data.
– In the upstream direction, the component converts third-party protocol

data into platform-supported data and calls the device SDK APIs to report
the data.

– In the downstream direction, the component, after receiving data from
the platform, converts the data into third-party protocol data and
forwards the data to third-party protocol devices.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

3. Device SDK: The component is the device access SDK provided by the
platform and offers common gateway functions. You can implement your own
gateways based on the SDK.

Service Flow

Figure 3-20 Service flow

1. Register a gateway on the IoT platform. For details, see "Devices" >
"Registering a Device" in the User Guide.

2. Power on the gateway and connect it to the platform. Obtain the
authentication parameters required for the connection from 1.

3. Register a child device on the platform. The platform delivers a child device
addition event to the gateway. The gateway saves the child device
information persistently. (The SDK provides the default persistent
implementation. You can customize the implementation.)

4. The child device connects to the gateway, and the gateway authenticates the
child device.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

5. The child device reports data to the gateway. The gateway converts the data
to the format supported by the platform and then calls an SDK API for
reporting child device properties or messages to the platform.

6. The platform delivers a command to the child device. The gateway converts
the command into a command compliant with the third-party protocol and
forwards it to the child device. The child device processes the command.

Implementation of Protocol Conversion Gateway
For details, see "Development on the Device Side" > "Access Using IoT Device
SDKs" in the Developer Guide.

3.8 IoTDA in Industrial Data Collection

Scenarios
IoTDA is a general IoT platform that provides general capabilities, such as device
connection, bidirectional communications between devices and the cloud, batch
device management, and remote control and monitoring. Solutions can be
customized based on project requirements to implement southbound and
northbound connection and support scenario-specific applications at the upper
layer. Industrial data collection is a typical use case of IoT technologies. IoTDA and
IoTEdge gain expertise in industrial data collection from the practices in the coal
mine, steel, automated machine, and food processing industries.

The following describes an industry application built based on industrial data
collection and demonstrates how to transfer data from end to end using IoTDA
and IoTEdge. The following figure shows the solution architecture.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

Figure 3-21 Architecture of the industrial data collector solution

Architecture Overview
NO TE

Figure 3-21 shows a complete industrial data collection solution. Not all services are
implemented by the platform. They are usually built together with customers or industry
partners.
In this example, the platform implements data collection and device modeling. This topic
focuses on the services provided by IoTDA at the device modeling layer and describes how
IoTDA works with IoTEdge. IoTEdge implements the services at the data collection layer.

The architecture consists of data collection, device modeling, and service modeling
layers from bottom to top. Core service functions of each layer are as follows:

● Data collection layer: In the industrial data collection solution, IoTEdge
collects OT data. It integrates diverse industrial IoT protocols using the
industrial data collection framework at the edge. This enables IoTEdge to read
point data of the subsystem upper computer or bottom-layer programmable
logic controller (PLC) and map the points to logical device models, thereby
reporting the data to IoTDA.

● Device modeling layer: IoTDA aggregates and parses data collected by
IoTEdge into data in the standard format, and pushes the data to the service

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

modeling layer based on forwarding rules. It also exposes unified device
management APIs to the industry application.

● Service modeling layer: Data from the device modeling layer is the data of a
logical device. However, there are parent-child relationships between logical
devices (such as water pumps, sensors, and air valves) in industrial scenarios.
For example, a compressor consists of an air valve, an air inlet pipe, and an
air tank. Service modeling processes the parent-child relationship to present
data in the granularity of assets to the upper layer.

At the industry application layer, you can quickly build applications using the real-
time and historical data APIs exposed by the service modeling layer and the device
control APIs exposed by the device modeling layer, without handling complex
protocols and data formats of devices.

There are two main northbound data flows from IoTDA in the industrial data
collection scenario, as shown in the following figure.

● Real-time data: You can push aggregated real-time data streams to the
upper layer in a unified device model and format based on specific rules and
granularities. For example, you can push parameters such as the motor
voltage, current, and power of a factory to be monitored in real time. For
details about the real-time data push, see Data Forwarding.

● Real-time control: IoTDA provides unified control APIs in the reverse control
scenario based on the unified model built for devices at the bottom layer. For
example, you can use the APIs to start or stop motors in a factory, turn on or
off a circuit breaker in a substation, and move robotic arms.

The following describes how to create a device model and how to connect to
upper-layer applications based on real-time data and real-time control.

Device Modeling Modes
A device model describes a device using a standard computer language. It defines
the data and control commands supported by the device. This helps upper-layer
applications understand diverse devices without understanding complex
underlying protocols and different data formats.

An ideal device model must meet the following requirements:

● Appropriate granularity: For the modeling of a power supply system, the
entire power supply system, substation, transformer, or even a measurement
and control device on a transformer can be used as a model. In this example,
the granularity of the model is reduced because a device model can be
adjusted flexibly using a computer language. If the granularity is too large,
reported data will be too large and inflexible and the model will deliver weak
universality. If the granularity is too small, an excessive number of models,
heavy workload, and complex logic between models will be generated. Based
on the practical experience of power supply system modeling, it is appropriate
to build each transformer as a model.

● Universality: A device model not only describes a device but also summarizes
a type of devices. In project practices, a type of devices that share a model
can be easily understood by the upper layer. This also helps you accumulate
data assets to develop big data and AI applications.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

NO TE

Device models are referred to as products in IoTDA. For details about products, see
Products.

The following uses motors in the belt transportation system as an example to
describe how to fill in modeling fields.

Servic
e
(Man
dator
y)
(servi
ce_id)

Property/Parameter
Name (Mandatory)
(property_name)

Data
Type
(Mandato
ry)
(data_typ
e)

Opera
tion
(met
hod)

Description
(description)

real_ti
me

Electric_Machinery_Sp
eed

decimal RW Motor rotation speed

real_ti
me

Electric_Machinery_Ta decimal R Motor stator
temperature (Ta)

real_ti
me

Electric_Machinery_Tb decimal R Motor stator
temperature (Tb)

real_ti
me

Electric_Machinery_Tc decimal R Motor stator
temperature (Tc)

real_ti
me

Electric_Machinery_Fro
ntT

decimal R Temperature of the
motor front end

real_ti
me

Electric_Machinery_Aft
erT

decimal R Temperature of the
motor back end

real_ti
me

Electric_Machinery_Ta_
Upper

decimal R Motor stator
temperature upper limit
(Ta)

real_ti
me

Electric_Machinery_Tb_
Upper

decimal R Motor stator
temperature upper limit
(Tb)

real_ti
me

Electric_Machinery_Tc_
Upper

decimal R Motor stator
temperature upper limit
(Tc)

real_ti
me

Electric_Machinery_Fro
ntT_Upper

decimal R Temperature upper limit
of the front end

real_ti
me

Electric_Machinery_Aft
erT_Upper

decimal R Temperature upper limit
of the back end

real_ti
me

Electric_Machinery_Sta
tus

int R Motor operating status

real_ti
me

Electric_Machinery_Fu
n1_Status

int R Fan operating status of
motor 1

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

Servic
e
(Man
dator
y)
(servi
ce_id)

Property/Parameter
Name (Mandatory)
(property_name)

Data
Type
(Mandato
ry)
(data_typ
e)

Opera
tion
(met
hod)

Description
(description)

real_ti
me

Electric_Machinery_Fu
n2_Status

int R Fan operating status of
motor 2

alarm Electric_Machinery_Ov
erload

int R Motor overload alarm
signal

alarm Electric_Machinery_Fro
ntT_Alarm

int R Motor front axle
temperature alarm
signal

alarm Electric_Machinery_Aft
erT_Alarm

int R Motor rear axle
temperature alarm
signal

alarm Electric_Machinery_Ta_
Alarm

int R Temperature alarm of
motor stator 1

alarm Electric_Machinery_Tb_
Alarm

int R Temperature alarm of
motor stator 2

alarm Electric_Machinery_Tc_
Alarm

int R Temperature alarm of
motor stator 3

The preceding model is based on the actual motor working scenario. Motor data
collected from the PLC is classified into real-time data (real_time) and alarm data
(alarm). real_time carries the real-time data of working motors. alarm carries
the alarm data of motors. The reporting frequency and priority of real-time data
are different from those of alarm data in practice. Therefore, you are advised to
distinguish them.

The key fields of the model are described as follows:

● Service (service_id): a set of capabilities of devices, such as real_time and
alarm. You can define and adjust the field based on the site requirements.

● Property (property_name): name of the device property, which identifies the
readable or writable points on the device. You are advised to set this field to
an identifying name.

● Data type (data_type): data type of the device property. The value can be int,
decimal, or string.

● Operation (method): operation type supported by a property. The value can
be R (read-only) or RW (read-write).

● Description (description): property description. You are advised to set this
field to the device data point name.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

Interconnecting with Real-time Data

In the industrial data collection solution, IoTDA aggregates data from the IoTEdge
data collection layer. The following describes how to forward the data to the
upper layer.

Generally, a complete production line consists of different automation systems of
multiple processes and auxiliary monitoring systems (such as environment and
power monitoring). Taking the coal mining industry as an example, safety is
always the top concern for the high-risk industry. From manual and semi-
mechanized mining to mechanized and intelligent mining, the coal mining
industry has improved the automation level and reduced underground personnel,
and is moving towards the ultimate goal of intelligent unmanned mining. The
mining and safety system that covers mining, tunneling, electromechanical
equipment, transportation and ventilation therefore came into being.

Based on the coal mine data collection practices, the real-time data of mining,
tunneling, electromechanical equipment, transportation and ventilation systems is
the data foundation for intelligent mining. Data of each system needs to be
collected from the bottom layer and pushed to the upper layer by system.
Therefore, data aggregated on IoTDA must be distinguished by system.

The following describes the implementation solution. The format of each to-be-
forwarded device data record cached on the platform is as follows:

{
 "resource": "device.property",
 "event": "report",
 "event_time": "20151212T121212Z",
 "notify_data": {
 "header": {
 "device_id": "d4922d8a-6c8e-4396-852c-164aefa6638f", // Device ID.
 "product_id": "ABC123456789", // ID of the product to which the device belongs.
 "app_id": "d4922d8a-6c8e-4396-852c-164aefa6638f", // Resource space ID.
 "gateway_id": "d4922d8a-6c8e-4396-852c-164aefa6638f", // The gateway ID is displayed if the
device is a child device.
 "node_id": "ABC123456789", // Node ID of the device.
 "tags": [// Key-value pairs customized on the device details page for the push after SQL filtering.
 {
 "tag_value": "topic",
 "tag_key": "ZCXT"
 }
]
 },
 "body": { // Property data reported by the device in the format defined in the device model.
 "services": [
 {
 "service_id": "real_time",
 "properties": {
 "CMJYXFX": 0,
 "CMJYXSD": 0,
 "DQCG_Z": 0.0,
 "DQCG_Y": 0.0,
 "CMJXDZJWZ": 0
 },
 "event_time": "20151212T121212100Z"
 }
]
 }
 }
}

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

The pushed data is a standard JSON character string. You can filter the JSON data
by key value using the SQL syntax. For details about the supported SQL filtering
functions, see SQL Statements.

The notify_data.header.tags field is reserved for you to customize tags for data
forwarding. Data can be filtered and forwarded based on the SQL syntax. If you
tag each message with the system to which it belongs, data can be filtered by
system based on tags during SQL-based forwarding.

The following describes how to configure a forwarding rule based on the fully-
mechanized mining system.

Step 1 Select the device to be tagged with its system to access the device details page.

Step 2 Click the Tags tab.

Step 3 Add a tag of system information, for example, topic:ZCXT. ZCXT indicates the
fully-mechanized mining system. topic indicates the tag name, which will be used
in SQL-based forwarding.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

Step 4 Click Yes.

Step 5 Choose Rules > Data Forwarding in the navigation pane.

Step 6 Click Create Rule in the upper right corner to configure a rule to forward data by
system.

Step 7 Enter the rule name Fully-mechanized mining system.

Step 8 Click Edit SQL on the right and enter a custom SQL statement.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

Step 9 In Filter Criteria, enter GET_TAG('topic')='ZCXT' to obtain the topic tag value. If
the value is ZCXT, the data will be forwarded.

Step 10 Click OK.

Step 11 Configure the forwarding target and enable the rule. For details, see Data
Forwarding.

----End

Implementing Real-time Control

In the industrial data collection scenario, the differences between the two APIs are
as follows:

● Modifying device properties: This API is used to modify and write readable
and writable properties in the device model. An HTTP request is responded
only after the modification is successful or fails. Generally, point write is
complete upon HTTP response completion. This API is recommended for the
industrial data collection scenario.

● Configuring desired properties in a device shadow: A device shadow stores
the desired value of the device property. The platform periodically compares
the reported value with the desired value in the background. If the values are
different, the platform keeps delivering the desired value to the device. The
HTTP response completion indicates that the shadow configuration is
complete. It is applicable only to store device configuration data.

IoT Device Access(IoTDA)
User Guide 3 Best Practices

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

4 FAQs

4.1 Product Models

4.1.1 How Can I Develop a Product Model?
IoTDA supports online and offline product model development. For details, see
"Product Development" > "Developing a Product Model" in the Developer Guide.

4.2 Data Reporting

4.2.1 How Do I Handle Data Reporting Failure?
1. If the device that attempted to report data has been deleted from IoTDA, re-

register the device and have the device report data again.

2. Check whether the product information specified when you called an API to
register the device is consistent with that in the product model.

3. Check whether the property names in the reported message are the same as
the service properties defined in the product model.

4. If the fault persists, check whether the network connection between the
device and IoTDA is normal and whether the device is running properly.

4.2.2 Why Does a Device Report Data Successfully at One
Location but Fail Elsewhere?

Contact the NB-IoT network carrier to check whether the NB-IoT card has
geographical restrictions and check the local NB-IoT network status.

4.3 Command Delivery

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

4.3.1 How Do I Handle Command Delivery Failure?
An error occurs when you call the API for delivering a command, or the API call
succeeded but the device does not receive the command. The possible causes are
as follows:

● The device is offline.

● The device has not subscribed to the topic to which the command is
published.

● The command delivery times out.

The following sections describe how to rectify the fault.

Device Offline

If the device is offline and you call the API for delivering the command, the error
code IoTDA.014016 is returned.

On the IoTDA console, choose Devices > All Devices, search for the device, and
view the device status.

If the device status is Offline, connect the device first. If the device status is
Inactive, initialize the device and connect the device first.

No Subscription to the Topic

Check whether the device has subscribed to the correct downstream topic. (The
API for delivering a command can be called only after the subscription is
successful. If the subscription fails, the device cannot receive messages from
IoTDA.)

$oc/devices/{device_id}/sys/commands/#

{device_id} indicates the device ID.

Command Delivery Timeout

After IoTDA sends a command to a device, it waits for a response from the device.
If the device does not respond to the command, a message is displayed indicating
that the delivery timed out. Enable the device to report a response as soon as it
receives the command. For details about the data format of the response, see "API
Reference on the Device Side" > "Device Command API" > "Upstream Response
Parameters" in the API Reference.

4.3.2 How Do I Deliver Commands to a CoAP Device?
Log in to the IoTDA console, and choose Devices > All Devices. Click View in the
row where the device is located, click the Commands tab, and deliver a command
in the Asynchronous Command Delivery area.

For details, see "User Guide" > "Message Communications" > "Command Delivery"
> "Command Delivery for Devices Using CoAP" in the Usage Guide.

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

4.3.3 How Do I Deliver Commands to an MQTT Device?
Log in to the IoTDA console, and choose Devices > All Devices. Click View in the
row where the device is located, click the Commands tab, and deliver a command
in the Synchronous Command Delivery area.

For details, see "Message Communications" > "Command Delivery" > "Command,
Property, and Message Delivery for MQTT Devices" in the User Guide.

4.4 Software or Firmware Upgrade

4.4.1 What Is a Software or Firmware Upgrade?
A software upgrade refers to the upgrade of the system software and application
software of the device. A firmware upgrade refers to the upgrade of the
underlying drivers of the device hardware.

To upgrade the software or firmware, upload the software or firmware package to
IoTDA. Devices can obtain the software or firmware package from IoTDA for
remote upgrade.

4.4.2 Can I Download Software or Firmware Packages from
Third-Party Servers to IoTDA?

No. However, you can upload such packages to IoTDA. To upload a software or
firmware package, log in to the IoTDA console, choose Devices > Software/
Firmware Upgrades, click the Software List or Firmware List tab under Manage
Resource Package, and click Upload.

4.5 Edge Devices

4.5.1 Why Does an Edge Device Fail MQTT Authentication?
When creating an MQTT device under an edge node, do not set the module ID
parameter. Otherwise, MQTT authentication fails.

4.5.2 Why Cannot Docker Bridges Communicate with Each
Other After the OS of Atlas 500 Is Upgraded to 22.0?

Security rules are added to new versions of EulerOS. Startup parameters are added
to Docker startup items. If Docker bridges need to communicate with each other,
perform the following operations:

Step 1 vi /etc/sysconfig/docker

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

Delete --userland-proxy=false, --icc=false, and --config-file="" from OPTIONS
and save it. The result is as follows:

OPTIONS='--live-restore --default-ulimit nofile=1024:1024 --default-ulimit nproc=2048:2048'

Step 2 Restart Docker.
systemctl daemon-reload
systemctl restart docker

----End

4.5.3 Why Is There No Password Text Box When I Change the
Password of an Edge Device?

If there is no text box for entering the password when you change the password of
an existing MQTT device under an edge node, the desired password value in the
device shadow may be canceled on the IoTDA console.

Log in to the IoTDA console. On the Device Details page, click the Device
Shadow tab, and click Configure Property to configure a desired value for the
password property of the MQTT device whose service ID is $config. You can set
the password property to any value. Return to the edge node details page and
configure a password for the MQTT device.

4.6 Clock Synchronization on Edge Nodes
This section describes how to configure clock synchronization on edge nodes.

4.6.1 Configuration File Directory
The default configuration file directory is ${EDGE_DAEMON_INSTALL_DIR}/
IoTEdge/edgeDaemon/conf/defaultConfig.json.

EDGE_DAEMON_INSTALL_DIR indicates the edgedaemon installation directory.
Specify the directory when obtaining the installation command. The default value
is /opt/IoTEdge. The following figure shows the details.

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

4.6.2 Configuration Example
The configuration items related to clock synchronization are as follows:

{
"skip_signature_verification": "false",
"clock_config": {
"enable_time_sync": "true",
"delay_threshold": "10",
"delay_threshold_ms": "20",
"calibration_period": "10",
"enable_sync_hwclock": "true"
}
}

4.6.3 Configuration Items
1. skip_signature_verification: Ignore this configuration item, which is

irrelevant to clock synchronization.
2. clock_config: clock synchronization configurations.
3. enable_time_sync: whether to enable clock synchronization. true indicates

that clock synchronization is enabled. false indicates that clock
synchronization is disabled. The default value is false.

4. delay_threshold: maximum offset, that is, the threshold for clock calibration.
If the threshold is reached, clock calibration is performed. The unit is second.

5. delay_threshold_ms: maximum offset, that is, the threshold for clock
calibration. If the threshold is reached, clock calibration is performed. The unit
is millisecond. The default value is 1000. Note that when this parameter is
set, delay_threshold is invalid, and the value of delay_threshold_ms prevails.

6. calibration_period: interval at which clock calibration is performed, in
seconds. The minimum value is 15 seconds, and the default value is 1 hour.

7. enable_sync_hwclock: whether to update the hardware clock synchronously.
After the restart, the hardware clock is used. If the hardware clock is
inconsistent with the system clock, the system clock is reset to the same time
as the hardware clock after the restart.

4.6.4 Precautions
After the configuration is modified, save the file and restart the edgedaemon
process for the modification to take effect.

Note: Restarting the daemon process will restart all applications, so you need to
perform configuration after the initial node installation.

Restart command:

systemctl restart edgedaemon

4.7 Edge Node Bridge Configuration
After an edge node is created, a bridge named iot-edge-bridge is created for
network access of edge applications. If a network access conflict occurs, you can
modify the network segment of the bridge to rectify the fault.

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

4.7.1 Configuration File Directory
The default configuration file directory is ${EDGE_DAEMON_INSTALL_DIR}/
IoTEdge/edgeDaemon/conf/defaultConfig.json.

EDGE_DAEMON_INSTALL_DIR indicates the edgedaemon installation directory.
Specify the directory when obtaining the installation command. The default value
is /opt/IoTEdge. The following figure shows the details.

4.7.2 Configuration Example
Example of edge node bridge configuration items:

{
"network_config": {
"ipv4_subnet": "169.254.254.0/24",
"ipv4_gateway": "169.254.254.1",
"ipv6_subnet": "fd0e::169:254:254:1/120",
"ipv6_gateway": "fd0e::169:254:254:1"
}
}

4.7.3 Configuration Items
1. network_config: network-related configuration of the self-built bridge iot-

edge-bridge.
2. ipv4_subnet: the bridge network segment. The default value is

169.254.254.0/24. In earlier versions, the value is 172.20.0.0/24.
3. ipv4_gateway: default gateway of the bridge. The default value is

169.254.254.1. In earlier versions, the value is 172.20.0.1.
4. ipv6_subnet: IPv6 network segment of the bridge. The default value is

fd0e::169:254:254:1/120.
5. ipv6_gateway: default IPv6 gateway of the bridge. The default value is

fd0e::169:254:254:1.

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

4.7.4 Precautions
After the configuration is modified, save the file and restart the edgedaemon
process for the modification to take effect.

Note: Restarting the daemon process will restart all applications, so you need to
perform configuration after the initial node installation.

Restart command:

systemctl restart edgedaemon

IoT Device Access(IoTDA)
User Guide 4 FAQs

Issue 01 (2025-11-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

	Contents
	1 Getting Started
	1.1 Accessing and Using IoTDA
	1.2 Connecting MQTT Devices
	1.3 Connecting NB-IoT Devices

	2 User Guide
	2.1 Products
	2.1.1 Creating a Product
	2.1.2 Querying a Product
	2.1.3 Exporting a Product

	2.2 Devices
	2.2.1 Registering a Device
	2.2.1.1 Registering an Individual Device
	2.2.1.2 Registering a Batch of Devices
	2.2.1.3 Exporting Batch Device Registration/Deletion Details

	2.2.2 Managing a Device
	2.2.2.1 Viewing and Deleting a Device
	2.2.2.2 Exporting Device Information
	2.2.2.3 Device Authentication
	2.2.2.4 Device Shadow
	2.2.2.5 Child Devices
	2.2.2.6 Tags
	2.2.2.7 Asset Properties
	2.2.2.8 Cloud O&M Configuration
	2.2.2.9 Device Configuration Detection

	2.2.3 Groups
	2.2.4 Software/Firmware Upgrades
	2.2.4.1 Overview
	2.2.4.2 Firmware Upgrades
	2.2.4.3 Software Upgrade
	2.2.4.4 Exporting Software/Firmware Upgrade Details

	2.2.5 Device CA Certificates
	2.2.6 MQTT X.509 Certificate Access
	2.2.7 HarmonyOS Device Management
	2.2.7.1 Device Connection Based on HarmonyOS Soft Bus

	2.3 Rules
	2.3.1 Overview
	2.3.2 Data Forwarding
	2.3.3 SQL Statements
	2.3.4 Connectivity Tests
	2.3.5 Server Certificates
	2.3.6 Device Linkage
	2.3.6.1 Cloud Rules
	2.3.6.2 Device-side Rules

	2.3.7 Data Forwarding Flow Control Policy

	2.4 Monitoring and O&M
	2.4.1 Reports
	2.4.2 Device Alarms
	2.4.3 Message Trace
	2.4.4 Online Debugging

	2.5 Device Security Center
	2.6 HarmonyOS Module
	2.6.1 HarmonyOS Soft Bus
	2.6.2 Device Engine

	2.7 Resource Spaces
	2.8 Plug-ins
	2.8.1 Introduction
	2.8.2 Procedure

	2.9 Message Communications
	2.9.1 Overview
	2.9.2 Data Reporting
	2.9.3 Command Delivery
	2.9.3.1 Mechanism
	2.9.3.2 Command, Property, and Message Delivery for MQTT Devices
	2.9.3.3 Command Delivery for Devices Using CoAP

	2.9.4 Custom Topic Communications
	2.9.5 M2M Communications

	2.10 Subscription/Push
	2.10.1 Overview
	2.10.2 Kafka Subscription/Push
	2.10.3 AMQP Subscription/Push
	2.10.3.1 Overview
	2.10.3.2 AMQP Client Access
	2.10.3.3 Java SDK Access Example
	2.10.3.4 Node.js SDK Access Example
	2.10.3.5 C# SDK Access Example

	2.10.4 HTTP/HTTPS Subscription/Push

	2.11 IoTEdge
	2.11.1 Node Management
	2.11.1.1 Registering an Edge Node
	2.11.1.2 Installing an Edge Node
	2.11.1.3 Managing an Edge Node
	2.11.1.3.1 Overview
	2.11.1.3.2 Modules
	2.11.1.3.3 OT Data Collection Configuration
	2.11.1.3.4 IT Data Collection Configuration
	2.11.1.3.5 Batch Task Import
	2.11.1.3.6 Child Devices
	2.11.1.3.7 Data Configuration
	2.11.1.3.8 Remote Maintenance
	2.11.1.3.9 Active/Standby Configuration
	2.11.1.3.10 Deleting an Edge Node

	2.11.2 Connecting a Device to an Edge Node
	2.11.2.1 Connection Mode
	2.11.2.2 Protocol Conversion
	2.11.2.2.1 Modbus Device Access
	2.11.2.2.2 OPC UA Device Access

	2.11.2.3 Transparent Transmission Gateway

	2.11.3 Application Management
	2.11.3.1 Overview
	2.11.3.2 Adding a Service Application
	2.11.3.3 Adding a Driver Application
	2.11.3.4 Adding a Version
	2.11.3.5 Deploying an Application
	2.11.3.6 Managing an Application

	2.11.4 IT Subsystem Integration
	2.11.4.1 Overview
	2.11.4.2 Route Configuration
	2.11.4.3 Module Configuration
	2.11.4.4 IT Data Collection

	2.11.5 Route Forwarding
	2.11.5.1 Overview
	2.11.5.2 Channel Types
	2.11.5.2.1 MQTT
	2.11.5.2.2 IoTDB
	2.11.5.2.3 InfluxDB V2

	2.11.5.3 Creating a Channel
	2.11.5.4 Deploying the Edge Push Application on a Node
	2.11.5.5 Allocating a Channel to a Node

	3 Best Practices
	3.1 Connecting a Device Simulator to IoTDA
	3.2 Automatic Device Shutdown Upon High Temperature
	3.3 Triggering and Forwarding an Alarm
	3.4 Sharing Device Location Information
	3.5 Using a Custom Topic for Communication
	3.6 Quick Integration with ROMA Connect
	3.7 Developing a Protocol Conversion Gateway for Access of Generic-Protocol Devices
	3.8 IoTDA in Industrial Data Collection

	4 FAQs
	4.1 Product Models
	4.1.1 How Can I Develop a Product Model?

	4.2 Data Reporting
	4.2.1 How Do I Handle Data Reporting Failure?
	4.2.2 Why Does a Device Report Data Successfully at One Location but Fail Elsewhere?

	4.3 Command Delivery
	4.3.1 How Do I Handle Command Delivery Failure?
	4.3.2 How Do I Deliver Commands to a CoAP Device?
	4.3.3 How Do I Deliver Commands to an MQTT Device?

	4.4 Software or Firmware Upgrade
	4.4.1 What Is a Software or Firmware Upgrade?
	4.4.2 Can I Download Software or Firmware Packages from Third-Party Servers to IoTDA?

	4.5 Edge Devices
	4.5.1 Why Does an Edge Device Fail MQTT Authentication?
	4.5.2 Why Cannot Docker Bridges Communicate with Each Other After the OS of Atlas 500 Is Upgraded to 22.0?
	4.5.3 Why Is There No Password Text Box When I Change the Password of an Edge Device?

	4.6 Clock Synchronization on Edge Nodes
	4.6.1 Configuration File Directory
	4.6.2 Configuration Example
	4.6.3 Configuration Items
	4.6.4 Precautions

	4.7 Edge Node Bridge Configuration
	4.7.1 Configuration File Directory
	4.7.2 Configuration Example
	4.7.3 Configuration Items
	4.7.4 Precautions

